
1. Light deflection

1.1 Deflection of a light corpuscle
The idea that light could be bent by gravity was mentioned by Isaac Newton in a note at the end of
Optiks, pusblished in 1704. Further calculations were made about a century later by the German
astronomer Johann Georg Von Soldner (1776-1833), who ended up quantifying that the deflection
of a photon grazing the surface of the sun would amount to about 0.9”.

What were the assumptions under which this result was obtain? Well, we should first of all
introduce the framework within which the idea was proposed. This is the so called “Corpuscolar
Theory of Light”, which assumes that photons are not mass-less.

In this framework, the derivation of the deflection angle of a photon by a mass M is rather
straightforward. It can be done in many ways, but we re-propose here a simple calculation by Victor
J. Stenger (2013), which is based on three ingredients:

• Newton’s law of gravity;
• Newton’s equivalence principle;
• Einstein’s special relativity.
Newton’s law of gravity says that the gravitational force between two bodies with masses m

and M is

~F =
GmM

r3 ~r , (1.1)

where r is the distance between the bodies, and G is the gravitational constant.
In its weak form, Newton’s equivalence principle states that

~F = m~a (1.2)

where a is the acceleration. The gravitational mass m in Eq. 1.1 equals the inertial mass m in
Eq. 1.2.

From Einstein’s special relativity, we have that the inertial mass of a photon with energy E is
E/c2, where c is the speed of light.

Let assume that a photon with initial momentum ~p grazes the surface of the Sun, as shown in
Fig. 1.1.1. The photon travels along the x-axis, while the y-axis was chosen to pass through the
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center of the sun, whose mass is M and whose radius is R. Let a be the impact parameter of the
photon, i.e. the minimal distance at with the un-deflected trajectory of the photon passes from the
Sun center. When the photon is at the position (x,y), the distance from the Sun is

r =
q

x2 +(a� y)2 . (1.3)

Let’s assume that the moment of the photon does not change significantly along its path. The

Figure 1.1.1: Schematic view of a photon grazing the surface of the Sun (from V. J. Stenger, 2013).

components of the gravitational force acting on the photon are

Fx =
d p
dt

cosq =
GMp

c[x2 +(a� y)2]
cosq =

GMp
c

x
[x2 +(a� y)2]3/2 , (1.4)

Fy =
d p
dt

sinq =
GMp

c[x2 +(a� y)2]
sinq =

GMp
c

a� y
[x2 +(a� y)2]3/2 . (1.5)

(1.6)

Now, let’s assume that x = ct. We can then write:

d pi

dt
=

d pi

dx
dx
dt

= c
d pi

dx
, (1.7)

which allows to re-write Eqs. 1.6 as

d px

dx
=

GMp
c2

x
[x2 +(a� y)2]3/2 , (1.8)

d py

dx
=

GMp
c2

a� y
[x2 +(a� y)2]3/2 . (1.9)

(1.10)
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These equations allow us to calculate by how much does the momentum change along the x
and the y axes as the x coordinate of the photon changes. Along the x�axis:

Dpx =
GMp

c2

Z •

�•

GMp
c2

x
[x2 +(a� y)2]3/2 dx

=
GMp

c2 [log[(a� y)2 + x2]]+•
�• = 0 . (1.11)

Thus, the photon momentum is un-changed along the x-axis. On the contrary, along the y-axis, the
photon momentum changes by

Dpy =
GMp

c2

Z •

�•

GMp
c2

a� y
[x2 +(a� y)2]3/2 dx

=
GMp

c2 [tan�1 x
a� y

]+•
�• =

2GMp
c2

1
a� y

, (1.12)

which can be used to compute the deflection angle

y =
Dpy

p
=

2GM
c2

1
a� y

. (1.13)

If the photon impact parameter is a� y = R�, Eq. 1.13 reduces to

y =
Dpy

p
=

2GM
c2R�

⇡ 0.875” , (1.14)

when inserting M = M� = 1.989⇥1030 kg and R� = 6.96⇥108 m. Thus, using Newtonian gravity
and assuming that photons are light corpuscles, we obtain that a photon grazing the surface of the
Sun is deflected by 0.875”. We will see shortly that this value is just half of what predicted by
Einsten in the framework of his Theory of General Relativity.

1.2 Deflection of light according to General Relativity
1.2.1 Fermat principle and light deflection

Starting from the field equations of general relativity, light deflection can be calculated by studying
geodesic curves. It turns out that light deflection can equivalently be described by Fermat’s principle,
as in geometrical optics. This will be our starting point.

Exercise 1.1 — Derive the Snell’s law from Fermat principle. In its simplest form the
Fermat’s principle says that light waves of a given frequency traverse the path between two
points which takes the least time. The speed of light in a medium with refractive index n is c/n,
where c is its speed in a vacuum. Thus, the time required for light to go some distance in such a
medium is n times the time light takes to go the same distance in a vacuum.

Referring to Fig. 1.2.1, the time required for light to go from A to B becomes

t = [{h2
1 + y2}1/2 +n{h2

2 +(w� y)2}1/2]/c.

We find the minimum time by differentiating t with respect to y and setting the result to zero,
with the result that

y
{h2

1 + y2}1/2 = n
w� y

{h2
2 +(w� y)2}1/2 .
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Figure 1.2.1: Definition sketch for deriving Snell’s law of refraction from Fermat’s principle. The shaded
area has refractive index n > 1

However, we note that the left side of this equation is simply sinqI , while the right side is
nsinqR, so that the minimum time condition reduces to

sinqI = nsinqR

We recognize this result as Snell’s law. ⌅

Taking inspiration from the Exercise above, we attempt to treat the deflection of light in a
general relativity framework as a refraction problem. We need an refractive index n because
Fermat’s principle says that light will follow a path along which the travel time,

ttravel =
Z n

c
dl , (1.15)

will be extremal. As in geometrical optics, we thus search for a path,~x(l), for which the variation

d
Z B

A
n(~x(l))dl = 0 , (1.16)

where the starting point A and the end point B are kept fixed.

Deflection in the Minkowski’s space-time
In order to find the refractive index, we make a first approximation: we assume that the lens is
weak, and that it is small compared to the overall dimensions of the optical system composed
of source, lens and observer. With “weak lens”, we mean a lens whose Newtonian gravitational
potential F is much smaller than c2, F/c2 ⌧ 1. Note that this approximation is valid in virtually all
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cases of astrophysical interest. Consider for instance a galaxy cluster: its gravitational potential is
|F|< 10�4c2 ⌧ c2. In addition, we also assume that the light deflection occurs in a region which
is small enough that we can neglect the expansion of the universe.

In this case, the metric of unperturbed space-time is the Minkowski metric,

hµn =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA ,

whose line element is

ds2 = hµndxµdxn = (dx0)2 � (d~x)2 = c2dt2 � (d~x)2 . (1.17)

Now, we consider a weak lens perturbing this metric, such that

hµn ! gµn =

0

BB@

1+ 2F
c2 0 0 0

0 �(1� 2F
c2 ) 0 0

0 0 �(1� 2F
c2 )

0 0 0 �(1� 2F
c2 )

1

CCA

for which the line element becomes

ds2 = gµndxµdxn =

✓
1+

2F
c2

◆
c2dt2 �

✓
1� 2F

c2

◆
(d~x)2 . (1.18)

⌅ Example 1.1 — Schwarzschild metric in the weak field limit. Assuming a spherically sym-
metric and static potential, the Einstein’s field equations can be solved to obtain the Schwarzschild
metric. The line element is written in spherical coordinates as

ds2 =

✓
1� 2GM

Rc2

◆
c2dt2 �

✓
1� 2GM

Rc2

◆�1

dR2 �R2(sin2 qdf 2 +dq 2) .

To obtain a simpler expression, it is convenient to introduce the new radial coordinate r, defined
through

R = r
✓

1+
GM
2rc2

◆2

and the cartesian coordinates x = r sinq cosq , y = r sinq sinf , and z = r cosq , so that dl2 =
dx2 +dy2 +dz2. After some algebra, the metric can then be written in the form

ds2 =

✓
1�GM/2rc2

1+GM/2rc2

◆2

c2dt2 �
✓

1+
GM
2rc2

◆4

(dx2 +dy2 +dz2) .

In the weak field limit, F/c2 =�GM/rc2 ⌧ 1,
✓

1�GM/2rc2

1+GM/2rc2

◆2

⇡
✓

1� GM
2rc2

◆4

⇡
✓

1� 2GM
rc2

◆

=

✓
1+

2F
c2

◆



12 Chapter 1. Light deflection

and
✓

1+
GM
2rc2

◆4

⇡
✓

1+2
GM
rc2

◆

=

✓
1� 2F

c2

◆
.

Therefore, the Schwarzschild metric in the weak field limit equals

ds2 =

✓
1+

2F
c2

◆
c2dt2 �

✓
1� 2F

c2

◆
dl2 ,

thus recovering Eq. 1.18. ⌅

Effective refractive index
Light propagates at zero eigentime, ds = 0, from which we obtain

✓
1+

2F
c2

◆
c2dt2 =

✓
1� 2F

c2

◆
(d~x)2 . (1.19)

The light speed in the gravitational field is thus

c0 =
|d~x|
dt

= c

vuut1+ 2F
c2

1� 2F
c2

⇡ c
✓

1+
2F
c2

◆
, (1.20)

where we have used that F/c2 ⌧ 1 by assumption. The refractive index is thus

n = c/c0 =
1

1+ 2F
c2

⇡ 1� 2F
c2 . (1.21)

With F  0, n � 1, and the light speed c0 is smaller than in absence of the gravitational potential.

Deflection angle
The refractive index n depends on the spatial coordinate~x and perhaps also on time t. Let~x(l) be a
light path. Then, the light travel time is

ttravel µ
Z B

A
n[~x(l)]dl , (1.22)

and the light path follows from

d
Z B

A
n[~x(l)]dl = 0 . (1.23)

This is a standard variational problem, which leads to the well known Euler equations. In our case
we write

dl =
����

d~x
dl

����dl , (1.24)

with a curve parameter l which is yet arbitrary, and find

d
Z lB

lA

dl n[~x(l )]
����

d~x
dl

����= 0 (1.25)
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The expression

n[~x(l )]
����

d~x
dl

����⌘ L(~̇x,~x,l ) (1.26)

takes the role of the Lagrangian, with

~̇x ⌘ d~x
dl

. (1.27)

Finally, we have
����

d~x
dl

����= |~̇x|= (~̇x2)1/2 . (1.28)

The Euler equation writes:

d
dl

∂L
∂~̇x

� ∂L
∂~x

= 0 . (1.29)

Now,

∂L
∂~x

= |~̇x|∂n
∂~x

= (~—n)|~̇x| , ∂L
∂~̇x

= n
~̇x
|~̇x|

. (1.30)

Evidently, ~̇x is a tangent vector to the light path , which we can assume to be normalized by
a suitable choice for the curve parameter l . We thus assume |~̇x|= 1 and write~e ⌘ ~̇x for the unit
tangent vector to the light path. Then, we have

d
dl

(n~e)�~—n = 0 , (1.31)

or

n~̇e+~e · [(~—n)~̇x] = ~—n ,

) n~̇e = ~—n�~e(~—n ·~e) . (1.32)

The second term on the right hand side is the derivative along the light path, thus the whole right
hand side is the gradient of n perpendicular to the light path. Thus

~̇e =
1
n
~—?n = ~—? lnn . (1.33)

As n = 1�2F/c2 and F/c2 ⌧ 1, lnn ⇡�2F/c2, and

~̇e ⇡� 2
c2
~—?F . (1.34)
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The total deflection angle of the light path is now the
integral over �~̇e along the light path,

~̂a =
2
c2

Z lB

lA

~—?Fdl , (1.35)

or, in other words, the integral over the "pull" of the grav-
itational potential perpendicular to the light path. Note
that ~—F points away from the lens center, so ~̂a points in
the same direction.

Born approximation
As it stands, the equation for ~̂a is not useful, as we would
have to integrate over the actual light path. However,
since F/c2 ⌧ 1, we expect the deflection angle to be
small. Then, we can adopt the Born approximation, fa-
miliar from scattering theory, and integrate over the un-
perturbed light path.

Suppose, therefore, that a light ray starts out into +~ez-direction and passes a lens at z = 0, with
impact parameter b. The deflection angle is then given by

~̂a(b) =
2
c2

Z +•

�•
~—?fdz (1.36)

⌅ Example 1.2 — Deflection by a point mass. If the lens is a point mass, then

F =�GM
r

(1.37)

with r =
p

x2 + y2 + z2 =
p

b2 + z2, b =
p

x2 + y2 and

~—?f =

✓
∂xF
∂yF

◆
=

GM
r3

✓
x
y

◆
. (1.38)

The deflection angle is then

~̂a(b) =
2GM

c2

✓
x
y

◆Z +•

�•

dz
(b2 + z2)3/2

=
4GM

c2

✓
x
y

◆
z

b2(b2 + z2)1/2

�•

0
=

4GM
c2b

✓
cosf
sinf

◆
, (1.39)

with
✓

x
y

◆
= b

✓
cosf
sinf

◆
(1.40)

Notice that Rs =
2GM

c2 is the Schwarzschild radius of a (point) mass M, thus

|~̂a|= 4GM
c2b

= 2
Rs

b
. (1.41)

Also notice that ~̂a is linear in M, thus the superposition principle can be applied to compute the
deflection angle of an ensemble of lenses. ⌅


