
1.2 Deflection of light according to General Relativity 15

Deflection of light by the Sun’s gravitational field
Note that the deflection angle found here in the framework of general relativity is very similar to
the result found in the Newtonian limit for a photon grazing the surface of the Sun. However, we
find here an extra factor two.

The reason for the factor of 2 difference is that both the space and time coordinates are bent in
the vicinity of massive objects — it is four-dimensional space–time which is bent by the Sun.

The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf
of Guinea, led by Eddington, Dyson, and Davidson was a turning point in the history of relativity:
it confirmed that masses bend light by the amount that is predicted by General Relativity.

For further reading on the Eddington expedition, we refer the reader to Smith (2015).

1.2.2 Deflection of light in the strong field limit
For the vast majority of gravitational lenses in the universe, the weak field limit holds. However,
compact objects such as neutron stars and black holes can also act as lenses. In these cases, the
approximations introduced above break down, as photons travel through very strong gravitational
fields. In the following, we briefly discuss the deflection angle of a static (i.e. non-rotating) compact
lens.

For a general static, spherically symmetric metric in the form

ds2 = A(R)dt2 �B(R)dR2 �C(R)(dq 2 + sin2 qdf 2) (1.42)

the analysis of the geodesic equations leads to the following expression for the deflection angle:

â =�p +
2G
c2

Z •

Rm

u

s
B(R)

C(R)[C(R)/A(R)�u2]
dR , (1.43)

where u is the impact parameter of the unperturbed photon and Rm is the minimal distance of the
deflected photon from the lens (Bozza, 2010). It can be shown that

u2 =
C(Rm)

A(Rm)
. (1.44)

Note that, in the case of the Schwarzschild metric, A(R) = 1� 2GM/Rc2, B(R) = A(R)�1, and
C(R) = R2.

In the weak field limit (R � Rm � 2GM/c2, i.e. for impact parameters much larger than the
lens Schwarzschild radius), Eq. 1.43 reduces to the well know equation

â =
4GM
c2u

. (1.45)

The exact solution of Eq.1.43 was calculated by Darwin (1959) to be

â =�p +4
G
c2

p
Rm/sF(j,m) , (1.46)

where F(f ,m) is the elliptic integral of the first kind, and

s =
p

(Rm �2M)(Rm +6M) (1.47)
m = (s�Rm +6M)/2s (1.48)
j = arcsin

p
2s/(3Rm �6M+ s) (1.49)

Fig.1.2.2 shows how the deflection angle varies as a function of the impact parameter of the
photon. At large distances, Eq. 1.46 is well approximated by the solution in the weak field limit. For
small impact parameters, the solutions in the strong and in the weak field limit differ significantly.
In particular, the deflection angle in Eq. 1.46 diverges for u = 3

p
3GM/c2 (or Rm = 3GM/c2).

Before reaching that point, the deflection angle exceeds 2p , meaning that the photon loops around
the lens before leaving it.

16 Chapter 1. Light deflection

Figure 1.2.2: Deflection angle by a compact lens as a function of the photon impact parameter. Shown are
the exact solution of the geodesic equations for a Schwarzschild metric (solid line) and the
solution in the weak field approximation (dashed line). The dotted vertical line shows the
impact parameter, u = 3

p
3GM/c2, for which the exact solution diverges, indicating that the

photon keeps looping around the lens.

1.3 Python application
In our first python application, we write a script to produce Fig. 1.2.2.

We want to implement the formula in Eq. 1.46. We also need to remind that

u2 =
C(Rm)

A(Rm)

We will compare the resulting deflection angle to

â =
4GM
c2u

(1.50)

which is the result we obtained in the weak-field limit.
We start by importing some useful packages:

from scipy import special as sy # need special functions for incomplete \\

elliptic integrals of the first kind

import numpy as np # efficient vector and matrix operations

import matplotlib.pyplot as plt # a MATLAB-like plotting framework

%matplotlib inline # only needed in jupyter notebooks

Note that we import the module special from scipy in order to compute the elliptic integral of
the first kind appearing in Eq. 1.46. See https://docs.scipy.org/doc/scipy/reference/special.html.

Our goal is to produce a graph. Let’s setup the fonts and the character size

font = {'family' : 'normal',
'weight' : 'normal',
'size' : 20}

1.3 Python application 17

import matplotlib
matplotlib.rc('font', **font)

The task can be completed in several ways. Here we chose to build a class for point black-holes:

class point_bh:

def __init__(self,M):
self.M=M

functions which define the metric.

def A(self,r):
return(1.0-2.0*self.M/r)

def B(self,r):
return (self.A(r)**(-1))

def C(self,r):
return(r**2)

compute u from rm

def u(self,r):
u=np.sqrt(self.C(r)/self.A(r))
return(u)

functions concurring to the deflection angle calculation

def ss(self,r):
return(np.sqrt((r-2.0*self.M)*(r+6.0*self.M)))

def mm(self,r,s):
return((s-r+6.0*self.M)/2/s)

def phif(self,r,s):
return(np.arcsin(np.sqrt(2.0*s/(3.0*r-6.0*self.M+s))))

the deflection angle

def defAngle(self,r):
s=self.ss(r)
m=self.mm(r,s)
phi=self.phif(r,s)
F=sy.ellipkinc(phi, m) # using the ellipkinc function

from scipy.special

return(-np.pi+4.0*np.sqrt(r/s)*F)

The class contains several methods which will be used to compute the deflection angle. For
example, we implement the functions A(R), B(R), and C(R). These will be used to convert the
minimal distance Rm to u. We also implement the functions s,m,j , which depend on the mass of the
black-hole and on the minimal distance Rm. Finally, we implement the function defAngle, which

18 Chapter 1. Light deflection

enables to compute the deflection angle using Eq. 1.46. This function uses the method elipkinc
from scipy.special to compute the incomplete elliptic integral of the first kind, F(j,m). Note
that j and m can be passed as numpy arrays, i.e. elipkinc can return values for a number of
couples (j,m).

Following the same approach, we build another class which deals with point lenses in the weak
field limit, i.e. it implements Eq. 1.50:

class point_mass:

def __init__(self,M):
self.M=M

the classical formula

def defAngle(self,u):
return(4.0*self.M/u)

We can now use the two classes above to build two objects, namely a black-hole lens (employing
the exact solution for the deflection angle) and a point mass lens, for which we will adopt the
weak-field limit. In both cases, the mass of the lens is fixed to 3M�. For a mass of this size, the
Schwarzchild radius is Rs ⇠ 9km:

bh=point_bh(3.0)
pm=point_mass(3.0)

We now use the linspace method from numpy to initialize an vector of minimal distances Rm,
which we will use to compute â . We use the method u(r) of point_bh to convert Rm into an array
of impact parameters u:

r=np.linspace(3.0/2.0,10,1000)*2.0*bh.M
u=bh.u(r)/2.0/bh.M

The deflection angle as a function of u or Rm can be computed in the cases of the exact solution and
in the weak field limit using the method defAngle applied to bh and pm:

a=bh.defAngle(r)
b=pm.defAngle(u*2.0*bh.M)

Note that u is in units of the Schwarzchild radius and that we have set G/c2 = 1.
Finally, we can produce a nice figure displaying the results of the calculation. We use

matplotlib.pyplot to do this:

initialize figure and axes

(single plot, 15" by 8" in size)

fig,ax=plt.subplots(1,1,figsize=(15,8))
plot the exact solution in ax

ax.plot(u,a,'-',label='exact solution')
plot the solution in the weak field limit

ax.plot(u,b,'--',label='weak field limit',color='red')
set the labels for the x and the y axes

ax.set_xlabel(r'u $[2GM/c^2]$')
ax.set_ylabel(r'$\hat\alpha(u)$ [radians]')

1.4 Exercises 19

add the legend

ax.legend()

We also want to show the vertical asymptote at ulim = 3/2
p

3GM/c2:

plot a vertical dotted line at u=3\sqrt(3)M

x=[np.min(u),np.min(u)]
y=[0,10]
ax.plot(x,y,':')

To conclude, we save the figure in a .png file:

save figure in png format

fig.savefig('bhalpha.png')

1.4 Exercises
Exercise 1.2 — Write a python script to produce a figure displaying â(Rm) with Rm in
9-1000 km for two lenses with mass M = 3M� and M = 10M�. ⌅

A. Python tutorial

A.1 Installation

The codes discussed as part of these lectures have been developed and run using Anaconda python
2.7 by Continuum analytics. This is just one of the python distributions available for free and we
expect that the codes proposed here should run without problems with any of them.
If the reader opts for the Anaconda distribution, she/he can download the installer, which is available
for Windows, Mac OSX, and Linux platforms, from https://www.continuum.io/downloads.
Following the installation instructions, python should be ready for usage within few minutes.

A.2 Documentation

There are many resources online and books to learn how to program in python. The list below is
just a starting point and does not want to be complete:

• the online official documentation can be found at this url: http://www.python.org/doc;
• several platforms for e-learning propose courses to learn python. For example, Codeacademy

offers an excellent course, which can be completed in only 13 hours;
• Google also offers a python class online;
• a more extensive (and practical) guide to python is given by Learn python the hard way

A.3 Running python

Python can be run in several ways:
• from the interactive interpreter: launch “python" in a shell. Quit with Ctrl+D or type “exit()"

when finished.
• create your own script with an extension “.py" and run it in a shell by typing “python <script

name>.py”
• use an Interactive Development Environment (IDE). These are software which include an

editor for coding and capabilities for executing the code. There are several options available
(e.g. spyder, Rodeo, etc.)

34 Chapter A. Python tutorial

• We recommend to become familiar with jupyter notebook, which is increasingly popular
among python users for sharing code and ideas.

A.4 Your first python code

Try running the code:

your first python code -- this is a comment

print ("Hello World!")

Congratulations! You have run your first python code!

A.5 Variables

Variables are names poinint to values or objects. Setting them in python is extremely easy, and you
don’t need to declare them before:

int_var = 4
float_var = 7.89778
boolean_var = True
string_var = "My name is Python"
obj_var=some_class_name(par1,par2)

A.6 Strings

String constants can be defined in three ways:

single_quotes = 'my name is Python'
double_quotes = "my name is Python"
triple_quotes = """my name is Python
and this is a multiline string.""" #This can contain line breaks!

Note that you can combine single and double quotes when you want to define strings which
contain quotes themselves:

double_quotes1 = 'my name is "Python"'
double_quotes2 = "don't"

otherwise you have to use backslashes:

double_quotes3 = 'don\'t'
\end{python}

Strings can me sliced:
\begin{minted}[bgcolor=bg]{python}
my_name='Massimo Meneghetti'
name = my_name[:7]
surname = my_name[8:]
a_piece_of_my_name=my_name[4:7]

A.6 Strings 35

You can make many operations with strings. These are objects and have many methods. Check
out this url to learn more: https://docs.python.org/2/library/stdtypes.html

Some examples:
• String concatenation:

back_to_my_full_name=name+" "+surname

• Convert to upper case

my_name_uppercase=back_to_my_full_name.upper()

The built-in function str converts numbers to strings:

my_int=2
my_float=2.0
str_int=str(my_int)
str_float=str(my_float)

Another way to include numbers in strings:

my_string1 = 'My integer is %d.' % my_int
my_string2 = 'My float is %f.' % my_float
my_string3 = 'My float is %3.1f (with only one decimal)' % my_float

With several variables, we need to use parentheses:

a = 2
b = 67
my_string4 = '%d + %d = %d' % (a, b, a+b)

a = 2
b = 67.3
my_string5 = '%d + %5.2f = %5.1f' % (a, b, a+b)

Not only you can convert numbers to string, but you can do the reverse operation:

s = '23'
i = int(s)
s = '23'
i = float(s)

Strip spaces at beginning and end of a string:

stripped = a_string.strip()

Replace a substring inside a string:

newstring = a_string.replace('abc', 'def')

Important note: a Python string is "immutable". In other words, it is a constant which cannot be
changed in place. All string operations create a new string. This is strange for a C developer, but it
is necessary for some properties of the language. In most cases this is not a problem.

36 Chapter A. Python tutorial

A.7 Lists
A list is a dynamic array of any objects. It is declared with square brackets:

a_list = [1, 2, 3, 'abc', 'def']

Lists may contain lists:

another_list = [a_list, 'abc', a_list, [1, 2, 3]]

Note that alist in this case is a pointer.
Access a specific element by index (index starts at zero):

elem = a_list[2]
elem2 = another_list[3][1]

It’s easy to test if an item is in the list:

if 'abc' in a_list:
print 'bingo!'

Extracting a part of a list is called slicing:

list2 = a_list[2:4] # returns a list with items 2 and 3 (not 4)

Other list operations like appending:

a_list.append('ghi')
a_list.remove('abc')

Other list operations: http://docs.python.org/lib/typesseq.html

A.8 Tuples
A tuple is similar to a list but it is a fixed-size, immutable array. This means that once a tuple has
been created, its elements may not be changed, removed, appended or inserted.

It is declared using parentheses and comma-separated values:

a_tuple = (1, 2, 3, 'abc', 'def')

but parentheses are optional:

another_tuple = 1, 2, 3, 'abc', 'def'

Tip: a tuple containing only one item must be declared using a comma, else it is not considered as a
tuple:

a_single_item_tuple = ('one value',)

R Tuples are not constant lists – this is a common misconception. Lists are intended to be
homogeneous sequences, while tuples are hetereogeneous data structures.
In some sense, tuples may be regarded as simplified structures, in which position has semantic
value [e.g. (name,surname,age,height,weight)]. For this reason they are immutable, contrary
to lists.

A.9 Dictionaries 37

A.9 Dictionaries
A Dictionary (or "dict") is a way to store data just like a list, but instead of using only numbers to
get the data, you can use almost anything. This lets you treat a dict like it’s a database for storing
and organizing data.

Dictionaries are initialized using curl brackets:

person = {'name': 'Massimo', 'surname': 'Meneghetti'}

You can access the elements of the dictionary by using the entry keys:

person['name']

The keys can also be numbers:

person = {'name': 'Massimo', 'surname': 'Meneghetti', 1: 'new data'}
person[1]

A.10 Blocks and Indentation
Blocks of code are delimited using indentation, either spaces or tabs at the beginning of lines. This
will become clearer in the next sections, when loops will be introduced.

Tip: NEVER mix tabs and spaces in a script, as this could generate bugs that are very difficult
to be found.

A.11 IF / ELIF / ELSE
Here is an example of how to implement an IF/ELIF/ELSE loop:

if a == 3:
print 'The value of a is:'
print 'a=3'

if a == 'test':
print 'The value of a is:'
print 'a="test"'
test_mode = True

else:
print 'a!="test"'
test_mode = False
do_something_else()

if a == 1 or a == 2:
pass # do nothing

elif a == 3 and b > 1:
pass

elif a==3 and not b>1:
pass

else:
pass

38 Chapter A. Python tutorial

A.12 While loops

a=1
while a<10:

print a
a += 1

A.13 For loops

for a in range(10):
print a

my_list = [2, 4, 8, 16, 32]
for a in my_list:

print a

A.14 Functions
Functions can be defined in python as follows:

def compute_sum(arg1,arg2):
implement function to calculate the sum of two numbers

res=arg1+arg2
return(res)

The function can be called by typing the function name. If the function returns a value or object,
this is assigned to a variable as follows:

summa=compute_sum(3.0,7.0)

Otherwise, the function can just be called without setting it equal to any variable.

c=3

def change_global_c(val):
this function change the value of a global variable

global c
c=val

change_global_c(10)

A.15 Classes
Classes are a way to group a set of functions inside a container. These can be accessed using the .
operator. The main purpose of classes is to define objects of a certain type and the corresponding
methods. For example, we may want to define a class called ’square’, containing the methods to
compute the square properties, such as the perimeter and the area. The object is initialized by
means of a “constructor”:

A.15 Classes 39

class square:

#the constructor:

def __init__(self,side):
self.side=side

#area of the square:

def area(self):
return(self.side*self.side)

#perimeter of the square:

def perimeter(self):
return(4.0*self.side)

We can then use the class to define a square object:

s=square(3.0) # a square with side length 3

print s.area()
print s.perimeter()

As in other languages (e.g. C++), python supports inheritance. A class can be used as an
argument for another class. In this case the new class will inherit the methods of the parent class.
For example:

class geometricalFigure(object):

def __init__(self,name):
self.name=name

def getName(self):
print 'this is a %s' % self.name

class square(geometrical_figure):

#the constructor:

def __init__(self,side):
geometricalFigure.__init__(self,'square')
self.side=side

#area of the square:

def area(self):
return(self.side*self.side)

#perimeter of the square:

def perimeter(self):
return(4.0*self.side)

class circle(geometrical_figure):

#the constructor:

40 Chapter A. Python tutorial

def __init__(self,radius):
geometricalFigure.__init__(self,'circle')
self.radius=radius

#area of the square:

def area(self):
return(3.141592653*self.radius**2)

#perimeter of the square:

def perimeter(self):
return(2.0*self.radius*3.141592653)

s=square(3.0)
c=circle(3.0)
s.getName()
c.getName()

In the example above, square and circle are two examples of geometricalFigure. They have
some specialized methods to compute the area and the perimeter, but both can access the method
getName, which belongs to geometricalFigure, because they have inherited it from the parent
class.

A.16 Modules

A module is a file containing Python definitions and statements (constants, functions, classes, etc).
The file name is the module name with the suffix .py appended.

Modules can be imported in another script by using the import statement:

import modulename

The functions and statements contained in the module can be accessed using the . operator.
Modules can import other modules. It is customary but not required to place all import

statements at the beginning of a module (or script, for that matter).
There is a variant of the import statement that imports names from a module directly into the

importing module’s symbol table. For example:

from modulename import something

A.17 Importing packages

Packages can be added to your python distribution by using either the pip or easy_install
utilities. Anaconda has its own utility for installing a (limited) set of supported packages, called
conda. To learn more, check out https://packaging.python.org/installing/

Packages can be used by importing modules and classes in the code as discussed above.
Some packages that we will use a lot:
• numpy: fundamental package for scientific computing with Python (powerful N-dimensional

array object, sophisticated functions, tools for integrating C/C++ and Fortran code, useful
linear algebra, Fourier transform, and random number capabilities);

A.17 Importing packages 41

• scipy: provides many user-friendly and efficient numerical routines such as routines for
numerical integration and optimization;

• matplotlib: a Python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats and interactive environments across platforms;

• astropy: a community effort to develop a single core package for Astronomy in Python and
foster interoperability between Python astronomy packages.

Other packages will be introduced in the examples.

