
18 Chapter 1. Light deflection

Figure 1.2.2: Deflection angle by a compact lens as a function of the photon impact parameter. Shown are
the exact solution of the geodesic equations for a Schwarzschild metric (solid line) and the
solution in the weak field approximation (dashed line). The dotted vertical line shows the
impact parameter, u = 3

p
3GM/c2, for which the exact solution diverges, indicating that the

photon keeps looping around the lens.

1.3 Deflection by an ensemble of point masses

The deflection angle in Eq. 1.41 depends linearly on the mass M. This result was obtained by
linearizing the equations of general relativity in the weak field limit. Under these circumstances,
the superposition principle holds and the deflection angle of an array of lenses can be calculated as
the sum of all contributions by each single lens.

Suppose we have a sparse distribution of N point masses on a plane, whose positions and
masses are ~xi and Mi, 1 i N. The deflection angle of a light ray crossing the plane at ~x will be:

~̂
a(~x) = Â

i
~̂
ai(~x �~

xi) =
4G
c2 Â

i
Mi

~
x �~

xi

|~x �~
xi|2

. (1.50)

Note that the formula above is similar to that we would use to compute the gravitational force
between point masses on the plane. While the force depends on the inverse squared distance, the
deflection angle scales as x

�1. In the case of many lenses, the computation of the deflection angle
using Eq. 1.50 can become very computationally expensive, as it costs O(N2). However, as it is
usually done to solve numerically N-body problems, algorithms employing meshes or hierarchies
(such as the so-called tree algorithms (Barnes and Hut, 1986)) can significantly reduce the cost of
calculations (e.g. to O(N logN)). For some application of these algorithms in the computation of
the deflection angles, we refer the reader to the works of Aubert, Amara, and Metcalf (2007) and
Meneghetti et al. (2010).

1.4 Deflection by an extended mass distribution

We now consider more realistic lens models, i.e. three dimensional distributions of matter. Even
in the case of lensing by galaxy clusters, the physical size of the lens is generally much smaller
than the distances between observer, lens and source. The deflection therefore arises along a very

1.5 Python applications 19

short section of the light path. This justifies the usage of the thin screen approximation: the lens is
approximated by a planar distribution of matter, the lens plane.

Within this approximation, the lensing matter distribution is fully described by its surface
density,

S(~x) =
Z

r(~x ,z) dz , (1.51)

where ~x is a two-dimensional vector on the lens plane and r is the three-dimensional density.
As long as the thin screen approximation holds, the total deflection angle is obtained by

summing the contribution of all the mass elements S(~x)d2
x :

~̂
a(~x) =

4G
c2

Z
(~x �~

x

0)S(~x 0)

|~x �~
x

0|2
d2

x

0 . (1.52)

This equation shows that the calculation of the deflection angle is formally a convolution of the
surface density S(~x) with the kernel function

~K(~x) µ
~
x

|~x |2
. (1.53)

This enables the calculation of the deflection angle field in the Fourier space as the product of the
Fourier transforms of S and K:

˜̂
ai(~k) µ S̃(~k)K̃i(~k) , (1.54)

where~k is the conjugate variable to ~x and the tilde denotes the Fourier Transforms. The subscript
i 2 [1,2] indicates the two components along the two axes on the lens plane (remember that â

is a vector!). This calculation can be implemented efficiently using the Fast-Fourier-Transform
(FFT) algorithm (Cooley and Tukey, 1965). Note that this assumes that the integration extends
to an infinite domain, while gravitational lenses have finite mass distributions. FFT algorithms
implement this feature assuming periodic conditions on the boundaries of the integration domain.

1.5 Python applications

1.5.1 Deflection by a black-hole
In our first python application, we write a script to produce Fig. 1.2.2. A brief python tutorial can
be found in Appendix A.

We want to implement the formula in Eq. 1.46. We also need to remind that

u2 =
C(Rm)

A(Rm)

We will compare the resulting deflection angle to

â =
4GM
c2u

(1.55)

which is the result we obtained in the weak-field limit.
We start by importing some useful packages:

20 Chapter 1. Light deflection

from scipy import special as sy # need special functions for incomplete \\

elliptic integrals of the first kind

import numpy as np # efficient vector and matrix operations

import matplotlib.pyplot as plt # a MATLAB-like plotting framework

%matplotlib inline # only needed in jupyter notebooks

Note that we import the module special from scipy in order to compute the elliptic integral of
the first kind appearing in Eq. 1.46. See https://docs.scipy.org/doc/scipy/reference/special.html.

Our goal is to produce a graph. Let’s setup the fonts and the character size

font = {'family' : 'normal',
'weight' : 'normal',
'size' : 20}

import matplotlib
matplotlib.rc('font', **font)

The task can be completed in several ways. Here we chose to build a class for point black-holes:

class point_bh:

def __init__(self,M):
self.M=M

functions which define the metric.

def A(self,r):
return(1.0-2.0*self.M/r)

def B(self,r):
return (self.A(r)**(-1))

def C(self,r):
return(r**2)

compute u from rm

def u(self,r):
u=np.sqrt(self.C(r)/self.A(r))
return(u)

functions concurring to the deflection angle calculation

def ss(self,r):
return(np.sqrt((r-2.0*self.M)*(r+6.0*self.M)))

def mm(self,r,s):
return((s-r+6.0*self.M)/2/s)

def phif(self,r,s):
return(np.arcsin(np.sqrt(2.0*s/(3.0*r-6.0*self.M+s))))

1.5 Python applications 21

the deflection angle

def defAngle(self,r):
s=self.ss(r)
m=self.mm(r,s)
phi=self.phif(r,s)
F=sy.ellipkinc(phi, m) # using the ellipkinc function

from scipy.special

return(-np.pi+4.0*np.sqrt(r/s)*F)

The class contains several methods which will be used to compute the deflection angle. For
example, we implement the functions A(R), B(R), and C(R). These will be used to convert the
minimal distance Rm to u. We also implement the functions s,m,j , which depend on the mass of the
black-hole and on the minimal distance Rm. Finally, we implement the function defAngle, which
enables to compute the deflection angle using Eq. 1.46. This function uses the method elipkinc
from scipy.special to compute the incomplete elliptic integral of the first kind, F(j,m). Note
that j and m can be passed as numpy arrays, i.e. elipkinc can return values for a number of
couples (j,m).

Following the same approach, we build another class which deals with point lenses in the weak
field limit, i.e. it implements Eq. 1.55:

class point_mass:

def __init__(self,M):
self.M=M

the classical formula

def defAngle(self,u):
return(4.0*self.M/u)

We can now use the two classes above to build two objects, namely a black-hole lens (employing
the exact solution for the deflection angle) and a point mass lens, for which we will adopt the
weak-field limit. In both cases, the mass of the lens is fixed to 3M�. For a mass of this size, the
Schwarzchild radius is Rs ⇠ 9km:

bh=point_bh(3.0)
pm=point_mass(3.0)

We now use the linspace method from numpy to initialize an vector of minimal distances Rm,
which we will use to compute â . We use the method u(r) of point_bh to convert Rm into an array
of impact parameters u:

r=np.linspace(3.0/2.0,10,1000)*2.0*bh.M
u=bh.u(r)/2.0/bh.M

The deflection angle as a function of u or Rm can be computed in the cases of the exact solution and
in the weak field limit using the method defAngle applied to bh and pm:

a=bh.defAngle(r)
b=pm.defAngle(u*2.0*bh.M)

Note that u is in units of the Schwarzchild radius and that we have set G/c2 = 1.

22 Chapter 1. Light deflection

Finally, we can produce a nice figure displaying the results of the calculation. We use
matplotlib.pyplot to do this:

initialize figure and axes

(single plot, 15" by 8" in size)

fig,ax=plt.subplots(1,1,figsize=(15,8))
plot the exact solution in ax

ax.plot(u,a,'-',label='exact solution')
plot the solution in the weak field limit

ax.plot(u,b,'--',label='weak field limit',color='red')
set the labels for the x and the y axes

ax.set_xlabel(r'u $[2GM/c^2]$')
ax.set_ylabel(r'$\hat\alpha(u)$ [radians]')
add the legend

ax.legend()

We also want to show the vertical asymptote at ulim = 3/2
p

3GM/c2:

plot a vertical dotted line at u=3\sqrt(3)M

x=[np.min(u),np.min(u)]
y=[0,10]
ax.plot(x,y,':')

To conclude, we save the figure in a .png file:

save figure in png format

fig.savefig('bhalpha.png')

1.5.2 Deflection by an extended mass distribution
In this application, we implement the calculation of the deflection angle field by an extended lens.
A two-dimensional map of the lens surface-density is provided by the fits file kappa_gl.fits (see
the data folder in the github repository). The map was obtained by projecting the mass distribution
of a dark matter halo obtained from N-body simulations on a lens plane. To be precise, this is
the surface density divided by a constant which depends on the lens and source redshifts (we will
talk about this constant in the next lectures). Let’s denote this quantity as k . Accounting for this
normalization, the calculation we want to implement is

~
a(~x) =

1
p

Z
k(~x0)

~x�~x0

|~x�~x0|2 d2x0 .

This is a convolution, which can be written in the Fourier Space as

~̃
a(~k) = 2pk̃(~k)~̃K(~k)

where ~̃K(~k) is the Fourier Transform of

~K(~x) =
1
p

~x
|~x|2

We use the numpy.fft module:

1.5 Python applications 23

import numpy as np
import numpy.fft as fftengine

We define a class called deflector, where the deflector object is initialized by reading the fits
file containing the surface density map of the lens. To deal with the fits files, we need to use the
astropy.io.fits module.

The class contains some methods to
• build the kernel K(~x);
• compute the deflection angle map by convolving the convergence with the kernel;
• perform the so-called "zero-padding";
• crop the zero-padded maps.

import astropy.io.fits as pyfits

class deflector(object):

initialize the deflector using a surface density (covergence) map

the boolean variable pad indicates whether zero-padding is used

or not

def __init__(self,filekappa,pad=False):
kappa,header=pyfits.getdata(filekappa,header=True)
self.kappa=kappa
self.nx=kappa.shape[0]
self.ny=kappa.shape[1]
self.pad=pad
if (pad):

self.kpad()
self.kx,self.ky=self.kernel()

implement the kernel function K

def kernel(self):
x=np.linspace(-0.5,0.5,self.kappa.shape[0])
y=np.linspace(-0.5,0.5,self.kappa.shape[1])
kx,ky=np.meshgrid(x,y)
norm=(kx**2+ky**2+1e-12)
kx=kx/norm/np.pi
ky=ky/norm/np.pi
return(kx,ky)

compute the deflection angle maps by convolving

the surface density with the kernel function

def angles(self):
FFT of the surface density and of the two components of the kernel

density_ft = fftengine.fftn(self.kappa,axes=(0,1))
kernelx_ft = fftengine.fftn(self.kx,axes=(0,1),

s=self.kappa.shape)
kernely_ft = fftengine.fftn(self.ky,axes=(0,1),

s=self.kappa.shape)

24 Chapter 1. Light deflection

perform the convolution in Fourier space and transform the result

back in real space. Note that a shift needs to be applied using

fftshift

alphax = 2.0/(self.kappa.shape[0])/(np.pi)**2*\
fftengine.fftshift(fftengine.ifftn(2.0*\
np.pi*density_ft*kernelx_ft))

alphay = 2.0/(self.kappa.shape[0])/(np.pi)**2*\
fftengine.fftshift(fftengine.ifftn(2.0*\
np.pi*density_ft*kernely_ft))

return(alphax.real,alphay.real)

returns the surface-density (convergence) of the deflector

def kmap(self):
return(self.kappa)

performs zero-padding

def kpad(self):
add zeros around the original array

def padwithzeros(vector, pad_width, iaxis, kwargs):
vector[:pad_width[0]] = 0
vector[-pad_width[1]:] = 0
return vector

use the pad method from numpy.lib to add zeros (padwithzeros)

in a frame with thickness self.kappa.shape[0]

self.kappa=np.lib.pad(self.kappa, self.kappa.shape[0],
padwithzeros)

crop the maps to remove zero-padded areas and get back to the

original region.

def mapCrop(self,mappa):
xmin=0.5*(self.kappa.shape[0]-self.nx)
ymin=0.5*(self.kappa.shape[1]-self.ny)
xmax=xmin+self.nx
ymax=ymin+self.ny
mappa=mappa[xmin:xmax,ymin:ymax]
return(mappa)

We can now build a deflector and use it to compute the deflection angles employing the method
angles:

df=deflector('data/kappa_gl.fits')
angx_nopad,angy_nopad=df.angles()
kappa=df.kmap()

import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm, PowerNorm, SymLogNorm
%matplotlib inline

fig,ax = plt.subplots(1,3,figsize=(16,8))

1.5 Python applications 25

Figure 1.5.1: Left panel: the surface density (convergence) map of the lens. Middle and right panels: maps
of the two components of the deflection angles.

ax[0].imshow(kappa,origin="lower")
ax[0].set_title('convergence')
ax[1].imshow(angx_nopad,origin="lower")
ax[1].set_title('angle 1')
ax[2].imshow(angy_nopad,origin="lower")
ax[2].set_title('angle 2')

Note that at this point we have not yet used the zero-padding trick. FFT assumes periodic boundaries
conditions, meaning that the lens mass distribution is replicated outside the boundaries. Given
that the region around the lens considered in this example is relatively small, we expect that the
deflection angles will be biased near the borders. The three panels in Fig. 1.5.1 show the maps of
the convergence and of the two components of the deflection angles obtained with this setting.

Zero-padding consists of placing zeros all around the convergence map. By doing so, we
double the size of the original map, but we expect to increase the accuracy of the calculations near
the borders, beacause the periodic conditions are better reproduced in this setting. We activate
zero-padding by just setting the variable pad=True when initializing the deflector. Fig. 1.5.2 shows
the zero-padded convergence map and the two new maps of the deflection angle components.

df=deflector('data/kappa_gl.fits',True)
angx,angy=df.angles()
kappa=df.kmap()

fig,ax = plt.subplots(1,3,figsize=(16,8))
angx,angy=df.angles()
ax[0].imshow(kappa,origin="lower")
ax[0].set_title('convergence')
ax[1].imshow(angx,origin="lower")
ax[1].set_title('angle 1')
ax[2].imshow(angy,origin="lower")
ax[2].set_title('angle 2')

26 Chapter 1. Light deflection

Figure 1.5.2: The figure shows the same maps as in Fig. 1.5.1, but with zero-padding. Indeed, as shown in
the left panel, the lens is surrounded by a frame of zeros, and the deflection angle maps are
computed on an area which has double the size of the maps in Fig. 1.5.1.

We are not interested in this large area, thus we can get rid of the values outside the lens
convergence map by cropping the deflection angle maps. The results are shown in Fig. 1.5.3 and
compared to the previous ones. In fact, significant differences are visible along the borders.

angx=df.mapCrop(angx)
angy=df.mapCrop(angy)

fig,ax = plt.subplots(2,2,figsize=(16,16))
ax[0,0].imshow(angx,origin="lower")
ax[0,0].set_title('angle 1')
ax[0,1].imshow(angy,origin="lower")
ax[0,1].set_title('angle 2')
ax[1,0].imshow(angx_nopad,origin="lower")
ax[1,0].set_title('angle 1 - no zero pad')
ax[1,1].imshow(angy_nopad,origin="lower")
ax[1,1].set_title('angle 2 - no zero pad')

1.6 Problems
Problem 1.1 — Write a python script to produce a figure displaying â(Rm) with Rm in the
range 9-1000 km for two lenses with mass M = 3M� and M = 10M�..
Problem 1.2 — Define a class for an ensemble of point masses. The class should be
initialized with two numpy arrays containing the masses and the positions of the lenses.
Use the thin screen approximation and write the method to compute the deflection angle
at a certain location on the lens plane..

1.6 Problems 27

Figure 1.5.3: The upper panels show the same two maps displayed in the middle and right panels of
Fig. 1.5.2, which have been cropped to match the original size of the input convergence map.
The bottom panels show the maps obtained without padding, for comparison.

