
2. The general lens

2.1 Lens equation

Gravitational lensing is sensitive to the geometry of the universe. In particular, as in refractive
phenomena, the amplitude of the lensing effects is heavily dependent on the distances between the
observer, the lenses, and the sources. These are in turn related to the curvature and expansion rate
of the universe, which suggests that gravitational lensing is indeed a powerful tool for cosmology.

Instrinsic and apparent source position
In this section, we seek a relationship between observed and intrinsic positions of a source in a
gravitational lensing event. In absence of the lens, the light emitted by a distant source reaches an
observer, who sees the source at a certain position on the sky, ~b . This is the intrinsic position of the
source. Instead, when photons are deflected by a gravitational lens, the observer collects them from
a different direction, ~q , which corresponds to the apparent (or observed) position of the source. It
is common to refer to the apparent position of the source as to the image position.

In Fig. (2.1.1), we sketch a typical gravitational lens system. A mass is placed at redshift zL,
corresponding to an angular diameter distance DL. This lens deflects the light rays coming from a
source at redshift zS (or angular distance DS). At the bottom of the diagram, an observer collects
the photons from the distant source. The angular diameter distance between the lens and the source
is DLS.

R The angular diameter distance DA is defined as the ratio of an object’s physical transverse
size to its angular size (in radians). Therefore, it is used to convert angular separations in the
sky to physical separations on the plane of the sources.
This distance does not increase indefinitely with redshift, but it peaks at z ⇠ 1 and then it
turns over. Due to the expansion of the universe the angular diameter distance between z1 and
z2 (with z2 > z1) is not found by subtracting the two individual angular diameter distances:

DA(z1,z2) 6= DA(z2)�DA(z1) (2.1)

except for those situations where the expansion of the universe can be neglected (i.e. for lenses
and sources in our own galaxy). Hogg (1999) presents a concise summary on cosmological
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Figure 2.1.1: Sketch of a typical gravitational lensing system (Figure from Bartelmann and Schneider (2001).

distances. More in-depth discussions can be found in several cosmology books (see e.g.
Weinberg, 1972).

Thin screen approximation
If the physical size of the lens is small compared to the distances DL, DLS, and DS, the extension of
the lens along the line-of-sight can be neglected in the calculation of the light deflection. We can
assume that this occurs on a plane, called the lens plane.

R Given that the apparent position of the source, or image position, originates on this plane, the
lens plane is often refereed as the image plane.

Similarly, we can assume that all photons emitted by the source originate from the same distance
DS, meaning that the source lies on a source plane. The approximation of the lens and of the source
to planar distributions of mass and light, is called thin screen approximation.

Relating the intrinsic and apparent positions of the source
We first define an optical axis, indicated by the dashed line, perpendicular to the lens and source
planes and passing through the observer. Then we measure the angular positions on the lens and on
the source planes with respect to this reference direction.

Consider a source at the intrinsic angular position ~b , which lies on the source plane at a distance
~
h = ~

bDS from the optical axis. The source emits photons (we may now use the term “light rays")
that impact the lens plane at ~x = ~

qDL, are deflected by the angle ~̂a , and finally reach the observer.
The amplitude of the deflection is given by Eq. (1.36).

Due to the deflection, the observer receives the light coming from the source as if it was emitted
at the apparent angular position ~q . Note that we have used vectors to identify the source and image
positions on the corresponding planes, either in the case of angular and physical positions.

If ~q , ~b and ~̂a are small, the true position of the source and its observed position on the sky are
related by a very simple relation, which can be readily obtained from the diagram in Fig. 2.1.1.
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This relation is called the lens equation and is written as

~
qDS = ~

bDS +~̂
aDLS , (2.2)

where DLS is the angular diameter distance between lens and source.
Defining the reduced deflection angle

~
a(~q)⌘ DLS

DS
~̂
a(~q) , (2.3)

from Eq. (2.2), we obtain

~
b = ~

q �~
a(~q) . (2.4)

This equation, called lens equation, is apparently very simple. However, ~a(~q) can be a
complicated function of ~q , which implies that the equation can only be solved numerically in many
cases.

It is very common and useful to write Eq. (2.2) in dimensionless form. This can be done by
defining a length scale x0 on the lens plane and a corresponding length scale h0 = x0DS/DL on the
source plane. Then, we define the dimensionless vectors

~x ⌘
~
x

x0
; ~y ⌘

~
h

h0
, (2.5)

as well as the scaled deflection angle

~
a(~x) =

DLDLS

x0DS
~̂
a(x0~x) . (2.6)

Carrying out some substitutions, Eq. (2.2) can finally be written as

~y =~x�~
a(~x) . (2.7)

Solving the lens equation
From Eqs.2.4 and 2.7, it is obvious that knowing the intrinsic position of the source and the
deflection angle field a(~q) of the lens, the positions of the image(s) can be be found by solving the
lens equation for ~q . As it will be discussed later on, this can be achieved analytically only for very
simple lens mass distributions. Indeed, the equation is typically highly non-linear. When multiple
solutions exist, the source is lensed into multiple images.

When observing a lens system, the intrinsic position of the source is unknown, while the
position of its images can be measured. Then the source intrinsic position can be recovered by
assuming a model for the mass distribution of the lens, i.e. by solving the lens equation for ~b . This
is a much easier task, because the lens equation is linear in ~

b : for each image there is a unique
solution. Thus, if multiple images of the same source are identified, and the lens mass model is
correct, the same solution of the lens equation should be found for all images.

2.2 Lensing potential
An extended distribution of matter is characterized by its effective lensing potential, obtained by
projecting the three-dimensional Newtonian potential on the lens plane and by properly rescaling it:

Ŷ(~q) =
DLS

DLDS

2
c2

Z
F(DL~q ,z)dz . (2.8)

The lensing potential satisfies two important properties:
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1. the gradient of Ŷ is the reduced deflection angle:

~—
q

Ŷ(~q) = ~
a(~q) . (2.9)

Indeed, by taking the gradient of the lensing potential we obtain:
~—

q

Ŷ(~q) = DL~—?Ŷ = ~—?

✓
DLS

DS

2
c2

Z
F̂(~q ,z)dz

◆

=
DLS

DS

2
c2

Z
~—?F(~q ,z)dz

= ~
a(~q) (2.10)

Note that, using the adimensional notation,

~—x =
x0

DL
~—

q

. (2.11)

We can see that

~—xŶ =
x0

DL
~—

q

Ŷ =
x0

DL
~
a . (2.12)

By multiplying both sides of this equation by D2
L/x

2
0 , we obtain

D2
L

x

2
0

~—xŶ =
DL

x0
~
a . (2.13)

This allows us to introduce the dimensionless counterpart of Ŷ:

Y =
D2

L
x

2
0

Ŷ . (2.14)

Substituting Eq. 2.14 into Eq 2.13, we see that

~—xY(~x) = ~
a(~x) . (2.15)

2. the Laplacian of Ŷ is twice the convergence k:

4
q

Y(~q) = 2k(~q) . (2.16)

This is defined as a dimensionless surface density

k(~q)⌘ S(~q)
Scr

with Scr =
c2

4pG
DS

DLDLS
, (2.17)

where Scr is called the critical surface density, a quantity which characterizes the lens system
and which is a function of the angular diameter distances of lens and source.
Eq. 2.16 is derived from the Poisson equation,

4F = 4pGr . (2.18)

The surface mass density is

S(~q) = 1
4pG

Z +•

�•
4Fdz (2.19)

and

k(~q) =
1
c2

DLDLS

DS

Z +•

�•
4Fdz . (2.20)
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Let us now introduce a two-dimensional Laplacian

4
q

=
∂

2

∂q

2
1
+

∂

2

∂q

2
2
= D2

L

✓
∂

2

∂x

2
1
+

∂

2

∂x

2
2

◆
= D2

L

✓
4� ∂

2

∂ z2

◆
, (2.21)

which gives

4F =
1

D2
L
4

q

F+
∂

2F
∂ z2 . (2.22)

Inserting Eq. 2.22 into Eq. 2.20, we obtain

k(~q) =
1
c2

DLS

DSDL


4

q

Z +•

�•
Fdz+D2

L

Z +•

�•

∂

2F
∂ z2 dz

�
. (2.23)

If the lens is gravitationally bound, ∂F/∂ z = 0 at its boundaries and the second term on the
right hand side vanishes. From Eqs. 2.8 and 2.14, we find

k(q) =
1
2
4

q

Ŷ =
1
2

x

2
0

D2
L
4

q

Y . (2.24)

Since

4
q

= D2
L4x

=
D2

L
x

2
0
4x , (2.25)

using adimensional quantities Eq. 2.24 reads

k(~x) =
1
2
4xY(~x) (2.26)

Integrating Eq. (2.16), the effective lensing potential can be written in terms of the convergence as

Y(~x) =
1
p

Z

R

2
k(~x0) ln |~x�~x0|d2x0 , (2.27)

from which we obtain that the scaled deflection angle is

~
a(~x) =

1
p

Z

R

2
d2x0k(~x0)

~x�~x0

|~x�~x0| . (2.28)

2.3 Magnification and distortion
One of the main consequences of gravitational lensing is image distortion. This is particularly
evident when the source has an extended size. For example, background galaxies can appear as
very long arcs when lensed by galaxy clusters or other galaxies.

The distortion arises because light bundles are deflected differentially. Ideally, the shape of the
images can be determined by solving the lens equation for all the points within the extended source.
In particular, if the source is much smaller than the angular scale on which the lens deflection angle
field change, the relation between source and image positions can locally be linearized. In other
words, the distortion of images can be described by the Jacobian matrix

A ⌘ ∂

~
b

∂

~
q

=

 
di j �

∂ai(~q)

∂q j

!
=

 
di j �

∂

2Ŷ(~q)

∂qi∂q j

!
, (2.29)


