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THE COURSE

➤ module 1: Basics of Gravitational Lensing Theory 

➤ Applications of Gravitational Lensing: 

➤ module 2: microlensing in the MW 

➤ module 3: lensing by galaxies 

➤ module 4: lensing by galaxy clusters 

➤ module 5: lensing by the LSS 

➤ Python 

➤ Final exam



LEARNING RESOURCES

➤ http://pico.bo.astro.it/~massimo/teaching.html 

➤ available materials:  

➤ lecture scripts, articles, tutorials, links to external material 
and books 

➤ slides 

➤ python notebooks

http://pico.bo.astro.it/~massimo/teaching.html


CONTENTS OF TODAY’S LESSON

➤ Deflection of light in the Newtonian limit 

➤ Gravitational lensing in the context of general relativity 

➤ The deflection angle 



DEFLECTION OF A LIGHT CORPUSCLE

➤ Assumptions: 

➤ photons have an 
inertial gravitational 
mass 

➤ photons propagate at 
speed of light 

➤ Newton’s law of 
gravity 

➤ Newton’s principle of 
equivalence
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a� y = R� = 6.96⇥ 108m

 ⇡ 0.875”
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DEFLECTION OF LIGHT IN GENERAL RELATIVITY

➤ We will now repeat the calculation of the deflection angle in 
the context of a locally curved space-time 

➤ Assumptions: 

➤ the deflection occurs in small region of the universe and 
over time-scales where the expansion of the universe is not 
relevant 

➤ the weak-field limit can be safely applied: 

➤ perturbed region can be described in terms of an effective 
diffraction index 

➤ Fermat principle

|�|/c2 ⌧ 1



DEFLECTION OF LIGHT IN GENERAL RELATIVITY

n = c/c0 > 1
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Travel time=

Fermat principle: �

Z B

A
ndl = 0



DEFLECTION OF LIGHT IN GENERAL RELATIVITY

How to define the effective diffraction index?

absence of lens = unperturbed space-time 

described by the Minkowski metric

effective diffraction index >1 = 
perturbed space-time, described by 
the perturbed metric



SCHWARZSCHILD METRIC (STATIC AND SPHERICALLY SYMMETRIC)
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SCHWARZSCHILD METRIC IN THE WEAK FIELD LIMIT
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How to define the effective diffraction index?
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Let’s use the Fermat principle
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Let’s use the Fermat principle

generalized coordinate

generalized velocity

Langrangian!
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Let’s use the Fermat principle

Euler-Langrange equation:
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Deflection angle



DEFLECTION OF LIGHT IN GENERAL RELATIVITY

As it is written, this equation is 
not useful, as we would have to 
integrate over the actual light 
path. 

Let’s assume that the deflection is small. We can 
integrate the potential along the unperturbed 
path (Born approximation):



A PARTICULAR CASE: THE POINT MASS



A LIGHT  RAY GRAZING THE SURFACE OF THE SUN

General relativity:

Newtonian gravity 

and corpuscolar light:

The reason for the factor of 2 difference is that both the space and time 
coordinates are bent in the vicinity of massive objects — it is four-
dimensional space–time which is bent by the Sun.



EDDINGTON EXPEDITIONS

➤ In 1919 Eddington organized two 
expeditions to observe a total solar 
eclipse (Principe Island and Sobral) 

➤ The goal was to measure the lensing 
effect of the sun on background stars 

➤ Very conveniently, the sun was well 
aligned with the Iades open cluster 

➤ During the eclipse the expedition from 
Principe registered a shift in the 
apparent position of stars with respect 
to their night-time positions, which 
resulted to be consistent with the GR 
predictions 

➤ The Sobral expedition measured a 
smaller deflection but this was 
interpreted as the result of a technical 
problem.



EDDINGTON EXPEDITIONS

➤ In 1919 Eddington organized two 
expeditions to observe a total solar 
eclipse (Principe Island and Sobral) 

➤ The goal was to measure the lensing 
effect of the sun on background stars 

➤ Very conveniently, the sun was well 
aligned with the Iades open cluster 

➤ During the eclipse the expedition from 
Principe registered a shift in the 
apparent position of stars with respect 
to their night-time positions, which 
resulted to be consistent with the GR 
predictions 

➤ The Sobral expedition measured a 
smaller deflection but this was 
interpreted as the result of a technical 
problem.



EDDINGTON EXPEDITIONS

➤ In 1919 Eddington organized two 
expeditions to observe a total solar 
eclipse (Principe Island and Sobral) 

➤ The goal was to measure the lensing 
effect of the sun on background stars 

➤ Very conveniently, the sun was well 
aligned with the Iades open cluster 

➤ During the eclipse the expedition from 
Principe registered a shift in the 
apparent position of stars with respect 
to their night-time positions, which 
resulted to be consistent with the GR 
predictions 

➤ The Sobral expedition measured a 
smaller deflection but this was 
interpreted as the result of a technical 
problem.



EDDINGTON EXPEDITIONS

➤ In 1919 Eddington organized two 
expeditions to observe a total solar 
eclipse (Principe Island and Sobral) 

➤ The goal was to measure the lensing 
effect of the sun on background stars 

➤ Very conveniently, the sun was well 
aligned with the Iades open cluster 

➤ During the eclipse the expedition from 
Principe registered a shift in the 
apparent position of stars with respect 
to their night-time positions, which 
resulted to be consistent with the GR 
predictions 

➤ The Sobral expedition measured a 
smaller deflection but this was 
interpreted as the result of a technical 
problem.



EDDINGTON EXPEDITIONS

➤ In 1919 Eddington organized two 
expeditions to observe a total solar 
eclipse (Principe Island and Sobral) 

➤ The goal was to measure the lensing 
effect of the sun on background stars 

➤ Very conveniently, the sun was well 
aligned with the Iades open cluster 

➤ During the eclipse the expedition from 
Principe registered a shift in the 
apparent position of stars with respect 
to their night-time positions, which 
resulted to be consistent with the GR 
predictions 

➤ The Sobral expedition measured a 
smaller deflection but this was 
interpreted as the result of a technical 
problem.


