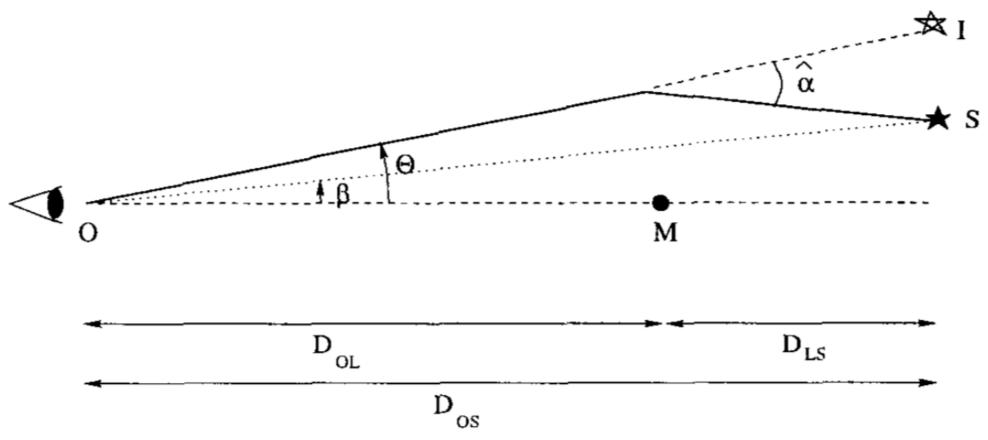
GRAVITATIONAL LENSING LECTURE 5

Docente: Massimo Meneghetti AA 2016-2017

CONTENTS

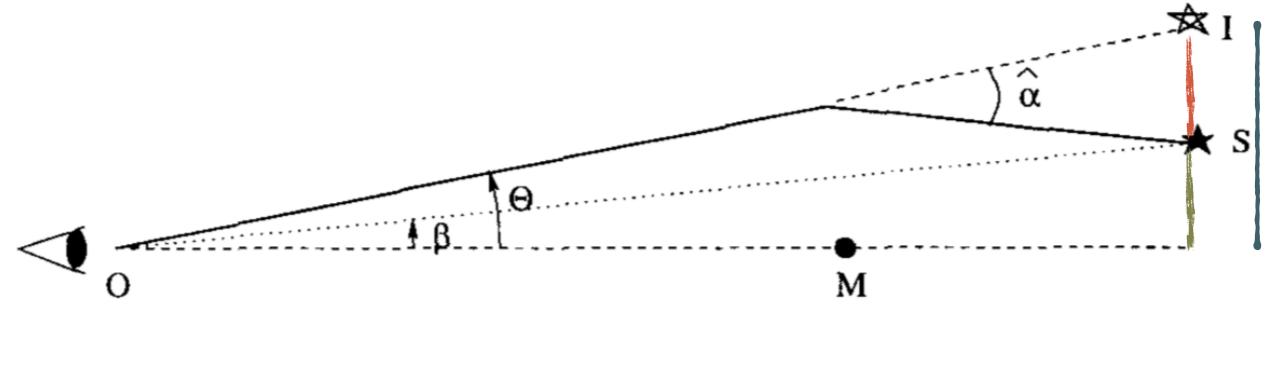
- > the lens equation
- ➤ lensing potential

LENS EQUATION



- ➤ We seek a relationship between observed and intrinsic positions of a source in a gravitational lensing event
- ➤ In absence of the lens, the light emitted by a distant source reaches the observer along a line-of-sight, which identifies the *source' intrinsic position* on the sky
- ➤ If there is a deflector, the source won't appear at the same position anymore: photons originally emitted in a different direction are deflected such to reach the observer, who will see the source at a different position, called the *observed position of the image*

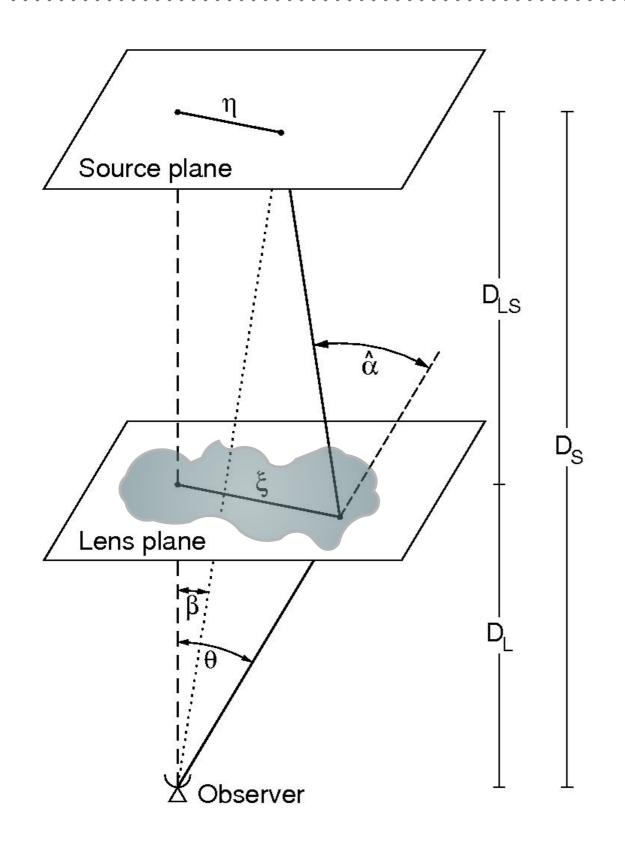
LENS EQUATION



$$\mathbf{D}_{\mathbf{L}}$$
 $\mathbf{D}_{\mathbf{L}\mathbf{S}}$

$$D_S \theta = D_S \beta + D_{LS} \hat{\alpha} \Rightarrow \beta = \theta - \frac{D_{LS}}{D_S} \hat{\alpha}(\theta)$$

LENS EQUATION



Remember that:

- 1) we are using the "Thin Screen Approximation"
- 2) positions on the lens and source planes are defined by vectors
- 3) the deflection angle itself is a vector

$$\vec{\beta} = \vec{\theta} - \frac{D_{LS}}{D_S} \hat{\vec{\alpha}}(\vec{\theta})$$

$$\vec{\theta} = \frac{\vec{\xi}}{D_L} \qquad \vec{\beta} = \frac{\vec{\eta}}{D_S}$$

$$\vec{\beta} = \vec{\theta} - \vec{\alpha} \qquad \vec{\alpha}(\vec{\theta}) = \frac{D_{LS}}{D_S} \hat{\vec{\alpha}}(\vec{\theta})$$

OTHER NOTATIONS

Quite often, an alternative way is chosen to write the lens equation: the so called "adimensional" notation.

This implies the choice of a reference angle (or length) to scale the source and image positions and the deflection angle:

$$\vec{\theta} = \frac{\vec{\xi}}{D_L} \qquad \vec{\beta} = \frac{\vec{\eta}}{D_S} \qquad \vec{\alpha}(\vec{\theta}) = \frac{D_{LS}}{D_S} \hat{\vec{\alpha}}(\vec{\theta}) \qquad \vec{\beta} = \vec{\theta} - \vec{\alpha}$$

$$heta_0 = rac{\xi_0}{D_L} = rac{\eta_0}{D_S}$$
 the reference angle subtends the reference scales on the lens and on the source planes

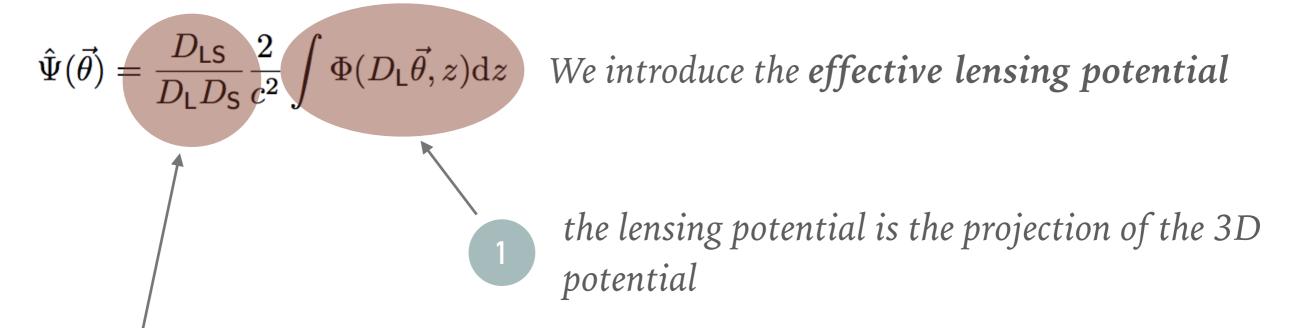
dividing both members of the lens equation by the reference angle...

$$\vec{y} = \vec{x} - \vec{\alpha}(\vec{x}) \qquad \qquad \vec{\alpha}(\vec{x}) = \frac{\vec{\alpha}(\theta)}{\theta_0} = \frac{D_L}{\xi_0} \frac{D_{LS}}{D_S} \hat{\vec{\alpha}}(\vec{\theta})$$

LENSING POTENTIAL

$$\hat{\vec{\alpha}} = \frac{2}{c^2} \int_{-\infty}^{+\infty} \vec{\nabla}_{\perp} \Phi dz$$

This formula tells us that the deflection is caused by the projection of the Newtonian gravitational potential on the lens plane.



the lensing potential scales with distances

OTHER PROPERTIES OF THE LENSING POTENTIAL

$$\vec{\nabla}_{\theta} \hat{\Psi}(\vec{\theta}) = \vec{\alpha}(\vec{\theta})$$

The reduced deflection angle is the gradient of the lensing potential

$$\vec{\nabla}_{\theta} \hat{\Psi}(\vec{\theta}) = D_{L} \vec{\nabla}_{\perp} \hat{\Psi} = \vec{\nabla}_{\perp} \left(\frac{D_{LS}}{D_{S}} \frac{2}{c^{2}} \int \hat{\Phi}(\vec{\theta}, z) dz \right)
= \frac{D_{LS}}{D_{S}} \frac{2}{c^{2}} \int \vec{\nabla}_{\perp} \Phi(\vec{\theta}, z) dz
= \vec{\alpha}(\vec{\theta})$$

NOTE THAT...

... the same result holds if we use the adimensional notation:

$$ec{
abla}_{x}=rac{\xi_{0}}{D_{
m L}}ec{
abla}_{ heta}$$

$$ec{
abla}_{x}\hat{\Psi}=rac{\xi_{0}}{D_{\mathrm{L}}}ec{
abla}_{ heta}\hat{\Psi}=rac{\xi_{0}}{D_{\mathrm{L}}}ec{lpha}$$

By multiplying both sides of the equation by $D_{\rm L}^2/\xi_0^2$ we obtain:

$$\frac{D_{\mathrm{L}}^2}{\xi_0^2} \vec{\nabla}_x \hat{\Psi} = \frac{D_{\mathrm{L}}}{\xi_0} \vec{\alpha} \qquad \qquad \Psi = \frac{D_{\mathrm{L}}^2}{\xi_0^2} \hat{\Psi} \qquad \qquad \vec{\nabla}_x \Psi(\vec{x}) = \vec{\alpha}(\vec{x})$$

We have introduced the adimensional counter-part of the lensing potential!

OTHER PROPERTIES OF THE LENSING POTENTIAL

$$\triangle_{\boldsymbol{\theta}} \Psi(\vec{\boldsymbol{\theta}}) = 2\kappa(\vec{\boldsymbol{\theta}})$$

The laplacian of the lensing potential is twice the convergence:

$$\kappa(\vec{\theta}) \equiv \frac{\Sigma(\vec{\theta})}{\Sigma_{\rm cr}}$$
 with $\Sigma_{\rm cr} = \frac{c^2}{4\pi G} \frac{D_{\rm S}}{D_{\rm L}D_{\rm LS}}$
$$[G] = L^3/M/T^2$$

$$[c^2] = L^2/T^2$$

$$[D_{\rm X}] = L$$

The critical surface density is a characteristic density to distinguish between strong and weak gravitational lenses!

OTHER PROPERTIES OF THE LENSING POTENTIAL

$$\triangle_{\theta}\Psi(\vec{\theta}) = 2\kappa(\vec{\theta})$$

The laplacian of the lensing potential is twice the convergence:

We start from the poisson equation

$$\triangle \Phi = 4\pi G\rho$$

The surface mass density is then:

$$\Sigma(\vec{\theta}) = \frac{1}{4\pi G} \int_{-\infty}^{+\infty} \triangle \Phi dz$$

$$\kappa(\vec{\theta}) = \frac{1}{c^2} \frac{D_{\rm L}D_{\rm LS}}{D_{\rm S}} \int_{-\infty}^{+\infty} \triangle \Phi dz$$

Let's introduce the Laplacian operator on the lens plane:

$$\triangle_{\theta} = \frac{\partial^{2}}{\partial \theta_{1}^{2}} + \frac{\partial^{2}}{\partial \theta_{2}^{2}} = D_{L}^{2} \left(\frac{\partial^{2}}{\partial \xi_{1}^{2}} + \frac{\partial^{2}}{\partial \xi_{2}^{2}} \right) = D_{L}^{2} \left(\triangle - \frac{\partial^{2}}{\partial z^{2}} \right)$$

Then:

$$\triangle \Phi = \frac{1}{D_{\rm L}^2} \triangle_{\theta} \Phi + \frac{\partial^2 \Phi}{\partial z^2}$$

THER PROPERTIES OF THE LENSING POTENTIAL

With this substitution:

$$\kappa(\vec{\theta}) = \frac{1}{c^2} \frac{D_{\rm LS}}{D_{\rm S} D_{\rm L}} \left[\triangle_{\theta} \int_{-\infty}^{+\infty} \Phi dz + D_{\rm L}^2 \int_{-\infty}^{+\infty} \frac{\partial^2 \Phi}{\partial z^2} dz \right]$$

where the second term in the sum is zero, if the lens if gravitationally bound!

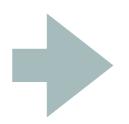
Given the definition of lensing potential:

$$\kappa(\boldsymbol{\theta}) = \frac{1}{2} \triangle_{\boldsymbol{\theta}} \hat{\Psi}$$

Note that:

$$\triangle_{m{ heta}} = D_{
m L}^2 \triangle_{m{\xi}} = rac{D_{
m L}^2}{m{\xi}_0^2} \triangle_x$$

$$\triangle_{\theta} = D_{\mathrm{L}}^2 \triangle_{\xi} = \frac{D_{\mathrm{L}}^2}{\xi_0^2} \triangle_x \qquad \kappa(\theta) = \frac{1}{2} \triangle_{\theta} \hat{\Psi} = \frac{1}{2} \frac{\xi_0^2}{D_{\mathrm{L}}^2} \triangle_{\theta} \Psi$$



$$\kappa(\vec{x}) = \frac{1}{2} \triangle_x \Psi(\vec{x})$$

ADIMENSIONAL NOTATION

From

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'}) \Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} d^2 \xi'$$

we obtain

$$\vec{\alpha}(\vec{x}) = \frac{1}{\pi} \int_{\mathbf{R}^2} d^2 x' \kappa(\vec{x}') \frac{\vec{x} - \vec{x}'}{|\vec{x} - \vec{x}'|}$$

Using

$$\vec{\nabla}_x \Psi(\vec{x}) = \vec{\alpha}(\vec{x})$$

Convolution kernels

$$\Psi(\vec{x}) = \frac{1}{\pi} \int_{\mathbf{R}^2} \kappa(\vec{x}') \ln |\vec{x} - \vec{x}'| \mathrm{d}^2 x'$$