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ABSTRACT

Because of dramatic improvements in the precision of astrometric measurements, the observation of
light centroid shifts in observed stars due to intervening massive compact objects (“astrometric
microlensing”) will become possible in the near future. Upcoming space missions, such as SIM and
GAIA, will provide measurements with an accuracy of 4-60 pas depending on the magnitude of the
observed stars, and an accuracy of ~1 pas is expected to be achieved in the more distant future. There
are two different ways in which astrometric microlensing signals can be used to infer information: one
possibility is to perform astrometric follow-up observations on photometrically detected microlensing
events, and the other is to perform a survey based on astrometric observations alone. After the predict-
able effects of the Sun and the planets, stars in the Galactic disk play the dominant role in astrometric
microlensing. The probability that the disk stars introduce a centroid shift larger than the threshold 6,
at a given time for a given source in the Galactic bulge toward Baade’s window reaches 100% for a
threshold of 6 = 0.7 pas, while this probability is ~2% for 6 = 5 pas. However, this centroid shift does
not vary much during the time in which a typical photometric microlensing event differs from baseline.
So astrometric follow-ups (e.g., with SIM) are not expected to be disturbed by the statistical astrometric
microlensing due to disk stars, so that it is possible to infer additional information about the nature of
the lens that caused the photometric event, as suggested. The probability of observing astrometric micro-
lensing events within the Galaxy turns out to be large compared to photometric microlensing events.
The probability of seeing a variation by more than 5 pas within 1 yr and reaching the closest angular
approach between lens and source is ~10~* for a bulge star toward Baade’s window, while this reduces
to ~6 x 107° for a direction perpendicular to the Galactic plane. For the upcoming mission GAIA, we
expect ~ 1000 of the observed stars to show a detectable astrometric microlensing signal within its 5 yr
lifetime. These events can be used to determine accurate masses of the lenses, and to derive the mass and

the scale parameters (length and height) of the Galactic disk.
Subject headings: galaxies: stellar content — galaxies: structure — gravitational lensing

1. INTRODUCTION

It has been known for more than a decade (Paczynski
1986) that the nature of matter between the observer and
observed source stars can be studied by observing bright-
enings of a large number of these stars caused by the deflec-
tion of light by the intervening material. In addition to this
magnification effect, there is also a shift in the light centroid
of the observed star introduced by the lens object (Hog,
Novikov, & Polnarev 1995; Miyamoto & Yoshii 1995;
Walker 1995). Upcoming space missions will enable us to
observe this centroid shift (Paczynski 1998; Boden, Shao, &
Van Buren 1998). In particular, the Space Interferometry
Mission (SIM; Allen, Person, & Shao 1997)° will allow
observations of selected targets with a positional accuracy
of ~4 puas for sources brighter than V' = 20. Moreover, the
Global Astrometric Interferometer for Astrophysics mission
(GAIA; Lindegren & Perryman 1996)* will perform an
astrometric survey aimed at all-sky coverage (Gilmore et al.
1998) with an accuracy of 20 pas (60 uas) for sources with
V < 12 (V < 15).° These two missions are somewhat com-

1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore,
MD 21218; ksahu@stsci.edu.
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3 For information about SIM see also http://sim.jpl.nasa.gov.

4 For information about GAIA, see also http://astro.estec.esa.nl/
SA-general/Projects/GAIA/gaia.html.

> Throughout the paper, we are talking about the accuracy of single
astrometric measurements, not the accuracy of parallax measurements
obtained from the mission within its lifetime.
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plementary: While SIM has the ability to point the instru-
ment to selected targets, it will not perform a large survey
program; on the other hand, GAIA will perform an all-sky
survey, but will not have the ability to point the instrument
to a selected target.

It has been mentioned (Paczynski 1998; Boden et al.
1998; Hog et al. 1995; Miyamoto & Yoshii 1995; Walker
1995) that the observation of the centroid shift during a
(photometrically discovered) microlensing event will yield
additional information about the lens, so that its mass, dis-
tance, and velocity can be determined unambiguously.

Most of the discussions in the literature so far have been
confined to the centroid shifts of photometrically detected
microlensing events that can be detected by an instrument
like SIM (e.g., Paczynski 1998; Boden et al. 1998). It has
been pointed out, however, that the microlensing cross
section for centroid shift measurements is much larger than
the cross section for light amplification (Paczynski 1996;
Miralda-Escudé 1996). In this paper, we investigate the
effects of disk stars on the astrometric microlensing signal
(centroid shift). The disk stars can affect this signal in two
ways. First, for a microlensing event that has been detected
by its photometric signal, the intervening matter can lead to
additional centroid shifts and variations of these shifts with
time, which disturb the signal of the centroid shift caused by
the lens responsible for the photometrically detected micro-
lensing event. Second, the disk stars form a population
producing microlensing events that can be detected by their
astrometric microlensing signal alone in an astrometric
survey such as GAIA.
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This paper is organized as follows. We discuss the signals
of photometric and astrometric microlensing in § 2. In § 3,
the optical depths due to photometric and astrometric
microlensing and the differences are discussed. The charac-
teristics of astrometric microlensing events and the pro-
spects for disk stars as lenses are discussed in § 4. In § 5, we
show that by observing astrometric microlensing events
toward several directions, one can measure the scale param-
eters of the mass distribution of the Galactic disk. In § 6, the
effect of a luminous lens is discussed, while the implications
for upcoming space missions are discussed in § 7. Finally, in
§ 8, the results of the previous sections are summarized.

2. THE SIGNALS OF PHOTOMETRIC AND ASTROMETRIC
MICROLENSING

Though the magnification of the source and the shift of
its centroid of light are based on the same effect, there are
some qualitative differences in the observable signals.

Let the source be located at a distance Dg from the obser-
ver and the lens with mass M at a distance 0 < D, < Dy
from the observer. Let ¢; and ¢g denote the angular posi-
tions of the lens and source respectively. One can then
define a dimensionless distance vector

Q95— @
= —-——= 1
u=gr =" )
where
4GM Dy — D
o= [~oM Ds —Ds @)
c DyD,
is the angular Einstein radius. The Einstein radius
4GM D,(Dg— D
TE = DL HE = \/ 2 L( S L) (3)
c Dy

gives the physical size of the angular Finstein radius in a
plane perpendicular to the line-of-sight observer-source at
the position of the lens (lens plane).

In the following, we assume that there is no light contri-
bution from an unresolved luminous lens. The validity of
this approximation and possible modifications due to a
luminous lens are discussed in § 6.

The magnification of the source due to the lens is given by
(e.g., Paczynski 1986)

u? +2
) = ——, )
u/u? + 4
where u = |u|.
Foru < 1, one has
1
M) ~—, ()
u
and for u > 1, one has
2
W =1+, ©)

so that for large angular separations, the lensed star pro-
duces a magnitude shift of

5

Amag = — 3 0uF

(7)
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The centroid shift of the source for a dark lens given by
(Hog et al. 1995; Miyamoto & Yoshii 1995; Walker 1995)

u

W=

O , (t)]
i.e., it points away from the lens as seen from the source.
Foru > /2, one has

) =+ O, o

so that the centroid shift falls off much more slowly than the
magnitude shift toward larger u. For u < \/i,

8(u) ~ g 0, (10)

i.e., for small separations, the centroid shift tends linearly to
zero, while the magnification increases toward smaller
separations. In contrast to the magnification, the absolute
centroid shift reaches a maximum at u = /2, which is

Omax = % 0 =~ 0.3546 . (11)
While the magnification is a dimensionless scalar, the cen-
troid shift is a vector with dimension, and therefore it
depends not only on the dimensionless separation u, but is
also proportional to the characteristic angular scale 0.
If one neglects the parallactic motion, the relative path
between lens and source is a straight line, so that

u(t) = J/ug + [pt)]* , (12)

where

t—t,
tg

p(t) = (13)
This means that the closest approach between lens and
source occurs at time t,, where |u| = u,, and

tg=—, (14)

where u is the relative proper motion between source and
lens.
The absolute value of the centroid shift then reads

) 2
AU+ P 0, (15)

Oltto, p) uf+p*+2

and the components against the direction of the motion of
the lens relative to the source d (i.e., in the direction of the
motion of the source relative to the lens) and perpendicular
to it toward the side where the source is passed as seen by a
moving lens (i.e., away from the lens as seen by a moving
source) 4, are

)4
6“(”0: p) = u(z) T P2 T2 HE s
u
0.(ug, p) = > (16)

-5 0.
uy+p?+2°"

These functions are shown in Figure 1 for several values
of u,. While 6, is symmetric around p = 0 and always posi-
tive, 0, is antisymmetric. 6| has a maximum atp = p,, , and
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FIG. 1.—Absolute centroid shift é and its components along the direction of motion (§) and perpendicular to it (6,) as a function of p for the minimum
separations u, = 0.1,0.3,0.5, 1.0, \/i 2.0,3.0, and 5.0. Top panel: The parallel component ¢ . The curves are antisymmetric with respect to p = 0, the steepest
curve corresponds to u, = 0.1 and the flattest curve to u, = 5. Middle panel: The perpendicular component ¢ ,. The curves are symmetric with respect to

p = 0. At p = 0, the largest value, namely \/5/4, is reached for u, =

ey

;4o =1 and u, = 2 yield the same J,(u,, 0). For large |p|, J,(u,, p) decreases with

smaller u,. Bottom panel: The absolute value of the centroid shift 6. The curves are symmetric with respect to p = 0. The largest value at p = 0 is reached for
Uy = ﬁ, namely ﬁ/4. For u, > /2, there is a maximum at p = 0, while for u, < /2 a minimum occurs. u, = 1 and u, = 2 yield the same d(u,, 0).

aminimum at p = —p,, |, where
_ 2
Pm1 =+ tio +2
and

1

5”(”0, Pmi) = —F——0g.

2 /ug +2

For u, < 1, one obtains

pm,L = \/5

(17)

(18)

(19)

and

5“(1/{0, pm,i) = 5max . (20)
0, reaches a maximum at p = 0, where the height of
the peak is maximal for u, = \/5, reaching 6, = J,,,,, and
in general the peak height is
Ug
05 .
u+2 "
Since the absolute centroid shift has a maximum at u =
\/i, o(uq, p) goes through a minimum at p = 0 for u, < \/5

9.(4o, 0) = 21
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and has two maxima at p = +p,,, where
=J2-us, (22)
ie, u=.u’, + p* J@ so that d(ug, P,) = Omax- INOtE

that foruy, <1, p,, >~ so that p,, ~ p,, ;. For uy, > \/5
¢ has only one maximum at p = 0, where

d(uo, 0) = 0,(up, 0) = O (23)

ug + 2
Note that d(u,,0) = 6(u,,0) for u, u, = 2.

For large |p|, 6, oc 1/p? while 6, oc 1/p, so that & points
nearly against the direction of the motion of the lens relative
to the source for large p and into it for small p, so that the
direction of the motion can be identified easily: the change
of the centroid shift is in the direction of the lens motion for
large |p|. Because of the symmetry of 6, and the anti-
symmetry of 6 |, the vector

8, = 3[0(uq, p) + 8ug, —p)] (24)

points perpendicular to the lens motion relative to the
source toward the side where the source is passed and the
vector

8 = 3[8(uo, p) — dluo, —p)] (25)

points against the direction of the motion of the lens relative
to the source for p > 0 and into it for p < 0.

In (6, 0,)-space, the centroid-shift trajectory is an ellipse
(e.g., Walker 1995) with semimajor axis a in the 6  -direction
and semiminor axis b in the J, -direction centered at (0, b),

centroid shift

at a given time
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where

S D S

222 YT 2ug+2
For uy, —» oo, this ellipse becomes a circle with radius
0s/(2u,), and for u,— 0, the ellipse degenerates into a
straight line of length GE/ﬁ (e.g., Walker 1995). For selec-
ted values of u,, the centroid-shift trajectory is shown in
Figure 2.

0y . (26)

3. OPTICAL DEPTHS FOR PHOTOMETRIC AND
ASTROMETRIC MICROLENSING

Let o denote an area in the lens plane for which source
positions projected onto the lens plane yield a certain
microlensing signature. The probability y of observing such
a signature for a given source is then given by the product of
the number area density of lenses and the area . With p(x)
being the mass volume density at the distance D, = xDj,
and f,,(M)dM being the distribution of lens masses, one
obtains y due to lenses at any distance between source and
observer as

y = Dg f 1 f ) % o(x, M) fi(MydMdx .  (27)

For photometric microlensing, a commonly used signa-
ture is the magnification of the light of the source star by
more than a threshold p; at a given time, and the associated
probability is referred to as optical depth of photometric
microlensing t,. This signature holds if the angular separa-

( ]peak\& var. ) peak

] $ Tobs/tE

source motion

variation

FIG. 2.—Centroid shift trajectory in (5, J,)-space for selected values of u, (where the brightness of the lens is neglected, see text for details). The centroid
shift traces out an ellipse. The small dots on the trajectory mark points of time spaced by ¢.
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tion between the lens and the source is smaller than a corre-
sponding threshold u;, given by the inversion of equation
(4) as

2
PR — (28)
1—pup?
and uT =1 corresponds to pp = 3/\/5 ~ 1.34. Therefore,
o = nu?rZ in this case, and the optical depth reads

tur) = uzt, (1), (29)
where
47G
T(1) = —5- Dsj p(x)x(1 — x)dx . (30)
Note that 7, does not depend on the masses of the lenses

and that, in addition to distances with large p, objects
around halfway between the observer and the source are
favored.

Let us now consider a similar signature for the centroid
shift, namely, the case where the centroid shift exceeds a
given threshold ;. From equation (8) one obtains that the
absolute centroid shift exceeds a given threshold 6, if u €

[ur, us ], where

=5y [, (31)

and u;f > /2> ug for 8; < 8,0 = (\/2/4)05. Otherwise,
there are no solutions owing to the fact that é; cannot
exceed d,,,,. Since the centroid shift is not a dimensionless
quantity, uy depend on 0y, whereas for photometric signa-
tures, u; depends only on the magnification threshold ur
and not on any other quantity. For K = 0/6; > 1,

R L )
Os
which also correspond to the large separation and small
separation limits, equations (9) and (10). As we will see in
more detail in the next section, 0, is of order mas, while o is
of order uas, so that this is a fair approximation.

Since the area in the lens plane giving a centroid shift
larger than d; is given by n[(u7)* — (ug)*]rs, and

K> /1_%%2_4_%, (33)

the optical depth for centroid shifts larger than §; can be
written as

(ur)? — (ur)* =

tur, ur) ~ 140, Og/d7) — 4r,(1), (34)

i.e.,, the corresponding area can be approximated by a circle
with radius u; = 0g/d;, so that the upper threshold
becomes u; ~ u; and the lower threshold becomes u; ~ 0.
This means that ¢ = nu?r = nD? 0%/62 and with equation
(27), 75 reads

16<0, %) = nDSJI I JS) DL 0; =L fu(M)dM dx

_ 16nG? DSM
C

f p(x)(1 — x)%dx , (35)
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where
M= roMfM(M) dM (36)
0

is the average mass from the mass spectrum f,.

Contrary to photometric microlensing, small distances
between observer and lens are favored, so that disk stars
give the main contribution. In addition, large distances
between observer and lens are disfavored compared to
photometric microlensing (see Fig. 3). While the bulge stars
and the LMC stars may play an important role in the
photometric microlensing toward the bulge (Kiraga &
Paczynski 1994) and the LMC (Sahu 1994), respectively,
their contribution to astrometric microlensing is very small.

From the expression for the optical depth t;, equation
(35), one sees that a probability density for a lens yielding a
deflection above a given threshold at any time is given by

dt; )
£ = Co =2 = €, pl(t — %P2, (37

so that the expectation value for the lens distance is given
by

[6 p(x)x(1 — x)*dx
J6 p()(1 — x)?dx
For constant mass density p(x) =

fo x(l — x)zdx 1

(x) = (38)

po, one obtains

After having established that the main contribution
comes from nearby lenses, we can estimate the detection
threshold for Dg> D;: The angular Einstein radius 6g

3
I astrometric |
i ~(1-x)? 1
2 - —
E L _
[
NS |
'E | photometric
5 ~x(1-x)
L L
1 - —
O | | ‘ | | ‘ | | ‘ | | ‘ |
0 0.2 0.4 0.6 0.8 1
x =D, /Dy

F1G. 3.—Density functions f(x) for photometric microlensing [ f;(x) =
6x(1 — x)] and astrometric microlensing [f,(x) = 3(1 — x)*] showing the
favored and disfavored values for the lens distance D; = xDg. The func-
tions fj(x) are normalized, so that [} f(x) = 1.
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TABLE 1
ASTROMETRIC MICROLENSING OPTICAL DEPTH

ASTROMETRIC MICROLENSING OPTICAL DEPTH PER OBSERVED STAR

Bulge Stars toward Baade’s Window*®

Perpendicular to Galactic Plane®

DETECTION THRESHOLD

O (uas) 75,0 Ts,0
0.7 o 1.0 0.11
) 0.55 58-1072
S 22 x 1072 23 x 1073
100 55 x 1073 58 x 107#
100 c.oeeiiiiiiie.. . 55 x 1073 58 x 107°

Note.—The astrometric microlensing optical depth t; oc p, M2 is shown as a function of the detec-
tion threshold d for sources (1) toward the Galactic bulge and (2) perpendicular to the Galactic plane, with
the reference values M = 0.5 M and p, = 0.08 Mg pc™3,eqgs. (48) and (84).

? p(x) = py, and Dg = 8.5 kpc.

® p(x) = p, exp {—xDg/H},and Dg > H = 300 pc.

reads in this limit
0. — 4GM
P74 D,

M 2/ p, \~12
=2. 4
0<0.5 Mo> (1 kpc) mas,  (40)

For the maximum separation uy yielding a signal above the
threshold d;, one obtains

M V2 p \"12( 5,
= 2000<0.5 Mo> <1 kpc) <1 uas) @)

Note that this is a gigantic number compared to photo-
metric microlensing, which yields a magnification 1% above
the baseline for u = 3.8, while for u = 200, the magnification
is only by a factor 1.4 x 10~° above the baseline, and for
u = 2000, this reduces to 1.4 x 10713,

Let us also look how the centroid shift varies with time,
i.e., consider a variation in the angular separation between
lens and source described by a proper motion u = do/dt =
v/D;. Assuming the lens to be dark or resolved from the
source, the change in the centroid shift is given by

which gives foru > 1
% ~ — % Og , (43)
or expressed with ¢ = ufg
ﬁ~—0%=—i2, (44)

i.e., the change of the centroid shift with the distance falls off
1 power faster than the centroid shift itself (eq. [9]), but, 2
powers slower than the shift in magnitude (eq. [7]. With

do v D, \!
it 58(100 km s1><1 kpc> pas *3)

one gets
& _ds do
dt  do dt
0% v
=8 0> (100 km s—1>
-1
x <1DTI£>C> uas days~ 1. (46)

For Dg > D;, the angular Einstein radius 0y is given by
equation (40) and the time in which the angular separation
between lens and source changes by 6y, is given by

_%
u

1/2 1/2
_ 35 M D,
0.5 Mg 1 kpc

>_ ' days . 47)

lg

v

% <100 kms !
This means that for a close encounter at a minimal angular
separation of <160, one has still a centroid shift of ~2 uas
at a time ¢t = 1000t ~ 100 yr after the closest encounter, a
centroid shift of ~20 pas at a timet = 100t; ~ 10 yr, and a
centroid shift of ~200 pas at a time t = 10tz ~ 1 yr, where
the magnitude shift is only of the order of 10~ %,

Since large contributions to the optical depth of astrom-
etric microlensing are expected for small distances between
lens and observer, the disk stars are expected to play the
most important role regardless of where the source star is
located.®

For sources in the Galactic bulge toward Baade’s
window (I = —1°, b = —4°), which is the field of interest for
the photometric microlensing surveys toward the Galactic
bulge, the mass density of the disk stars is approximately
constant, so that the optical depth for centroid shifts larger

¢ In fact, an even larger role is played by the sun and the solar planets,
whose effect is being taken into account in the SIM mission (R. J. Allen
1999, private communication).
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than § reads
16nG> _ Mp
Ts0="—"7Ds 520 I (1 —x)*dx
16rG> _ Mp,
3¢t T8 82

- 0'55<8.5 kpc)<0.5 M®>

% Po or \ 2 (48)
0.08 Mg pc™3/\1 pas)

Values for 7, for the reference values of M and p, are
shown in Table 1 for several values of d;. If one compares
these values to the optical depth for light amplification

D 2 p
1)=58x 1077 5 > , (49
wll) X (8.5 kpc> <0.08 M, po2) @

one sees that 7; > 47,(1) and therefore the approximation
T5ur, uy) x 140, HE/(ST) is justified.

The case of an exponential behavior of the mass density is
discussed in § 5.

4. ASTROMETRIC MICROLENSING EVENTS

4.1. The Characteristics

Photometric microlensing is described by three charac-
teristic quantities: The optical depth 7, the event rate I', and
the average duration of an event {tg», where one defines an
event to last if the magnification exceeds a given threshold
ur. These three characteristics are related by (Griest 1991)

T=T<tg> . (50)

Consider coordinates in the lens plane, where the lens is at
rest and the projected position of the source moves with a
velocity v = D, u. As discussed in § 3, the magnification
exceeds ur, if the position of the source projected onto the
lens plane is in a circle of radius urrg around the lens.
Optical depth, event rate, and average event duration can
be related to the “area,” “width,” and “average length” of
this circle, respectively (Mao & Paczyr'lski 1991; Dominik
1996). The area is given by a = nu? ri. The width w is given
by the range of impact parameters for which a moving
source hits the area, in this case w = 2u;rg. The average
length [ is given by the average length of the portion of the
source trajectory where the source is inside the area, in this
case | = (n/2uy1g.

For the optical depth, the area of successful source posi-
tions is given by o, = a = nuZrZ. All sources within a rec-
tangle with sides w = 2u,rg (perpendicular to the motion)
and T,,,v (parallel to the motion) will reach their closest
approach to the lens within T, and thereby show a peak in
their light curve. The area corresponding to events that
peak within T, is therefore Opeak = 27 Tg Ty v. Since every
source that enters the area given by o, peaks exactly once,
the event rate is glven by I' = 9 car/ Tons- The average event
duration is finally given by <{tg)> = l/v = (n/2)uy tg.

For photometnc microlensing, uT ~1l,and {tg) ~tg ~ 1
month, i.e., for T, ~ 1 yr, {tg) K T,y.. Th1s means that one
observes the events from baseline to peak and back to base-
line. This implies that an event with a peak amplification of
A, brightens by this amplification and fades back within
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T..., 1., events that reach 4; also vary by 4; or more
within the observation time.

Since uy > 1 for typical astrometric events, the situation
is quite different. Though in both cases, photometric and
astrometric microlensing, only the variation of the signal
(the magnification or the centroid shift) can be observed,
not the signal itself, this difference strongly affects astrom-
etric microlensing, while it does not affect photometric
microlensing, unless tg is very long. For astrometric micro-
lensing, {tg) ~ 200t ~ 20 yr, which may well exceed T,,,
so that one has to look for configurations where the signal
varies by a given amount rather than for configurations
where it exceeds some amount (compared to an asymptotic
value, which is unknown in this case).

As shown later, for small é; (<10 pas) and T, < 10 yr,
the region of source positions for which the centroid shift
varies by more than 6, within T, can be approximately
described by a circle of radius uy . rg, where ur .. < ur,
and uy ,, — up for T, - co. Therefore, one has an analo-
gous situation to the case where the criterion that the cen-
troid shift exceeds d is used: uy just needs to be replaced by
Ur - While the region o, = nu} .12 corresponds to
source positions giving rise to centroid shift variations
larger than 6, within T, this does not give the event rate,
because the same event may show a significant variation
within subsequent time intervals. Instead, it is again useful
to consider the closest approach between lens and source to
occur within T, yielding a peak signature. The source posi-
tions yielding a significant variation and a peak signature
are located within a rectangle with sides wu;rg
(perpendicular to motion) and T, v (parallel to motion), so
that the area of successful source positions i y,,, peak =
2up o Te Tops v. Figure 4 illustrates the regions yielding the
different signatures.

While for {tg)> < Ty, the observed variation becomes
identical with the maximum signal, for {tz) = T, it can
happen that one sees a significant variation without reach-
ing the peak and that one reaches the peak but does not see
a significant variation. For the actual centroid shift being
much larger than J; and the closest approach being
reached within T, , the observed variation of the centroid
shift during T, may fall below the threshold. On the other
hand, the variation in the centroid shift can be larger than
o7 without reaching the maximal value within T, .. In such
a case, a monotonous variation of the centroid shift can be
seen, which moreover points approximately into the same
direction. The observed centroid of light also moves as a
result of the proper motion of the source (and a luminous
lens) and of the parallactic motion, and these motions have
to be corrected for. In fact, for u > 1, the proper motion can
be many orders of magnitude larger than the centroid shift
due to lensing. The centroid shift due to lensing can only be
separated by detecting its different time behavior. There-
fore, the subset of events that also “peak ” within T, forms
a class of events with a signature that is distinct from proper
motion (and parallactic motion) and hence can be more
easily detected and distinguished.

Note that the effective observation time can be substan-
tially stretched just by making a few additional measure-
ments after a few years.

4.2. Significant Variation in an Event

Let us investigate the change of centroid shift between
two points of time separated by T,.. Let p, denote the
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F16. 4—Regions ¢ in the lens plane that correspond to projected source positions that yield a given signature. All distances are given in multiples of the
Einstein radius r. The lens is located in the center of the figure. The source moves in the indicated direction during the observation time T, , and the regions
o have been positioned with respect to the source position at the midpoint between the beginning and the end of the observations. The outer circle with radius
uy = 0/5; includes the positions of the source where the centroid shift exceeds the threshold 8, the inner circle with radius uy ., = [(0g T,)/(6 1 tp)]*?
includes the source positions for which the variation of the centroid shift during T, exceeds d,. Only for smaller regions, the closest approach between lens

and source occurs within T, yielding a peak signature.

value of p(t) (see eq. [13]) in the middle between these points
and

T,
= Zobs 51
p 2ty (51)

For u? + p3 > 1, the square of the absolute value of the
change in centroid shift is given by

Dz(“o, Po — Ap, po + Ap)
= | &(ug, po + Ap) — 8(uo, po — Ap)|*

s (s ) |
“L\u2 + (o + Ap)> 4 + (po — Ap)?

Po + Ap Po — Ap )2] )
+ — 0z . (52
[(ué ot Ap? W+ (o—app) [ O

For (Ap)* < u} + pj one obtains

Ap)*63
D*=4 4(5(2) l-)i-) ng)Z : (53)

In this limit, D is also the maximum change in the centroid
shift within T,,, around p,,’ so that the condition for a
change in the centroid shift above the threshold means that

7 For u, > 1, the centroid-shift curve in space is a circle, so that the
largest difference between two points within the traced time is the differ-
ence of the centroid-shift vectors at the boundary points if less than half the
circumference is traced and the largest difference is equal to the diameter of
the circle if half of the circumference or more is traced. For small Ap, one
traces less than half the circumference. For p® > uZ + 2, both components
of ¢ fall monotonously, so that the largest difference also occurs between
the boundary points for small u,, but larger |p|.

(ug, o) lie within a circle of radius

2ApOx
”T =

,var
or

Tc')bs HE
Orty

’Exbs

- v, (54)

T

>
=}
=

Using reference values, ur ,,, reads

sr \'?( D,
U var = 144(1 uas) 1 kpc'/?

v 12 T, 1/2
- __0bs 55
x (100 km s-1> <1 yr> > 59

which can be much smaller than u;, though still uy . > 1.
Let us now check the assumption (Ap)* < u ..., which
becomes

nbs U OE
- k4= 56
0 < Or (56)
with equation (54), i.e., the change in the angular separation
between lens and source in units of angular Einstein radii is
much smaller than the ratio between (4 times) the angular
Einstein radius and the centroid shift threshold é,. Equa-
tion (56) can also be written as
07 T
F=—02"-<«1. 57
462D, < 7
With <{tg> = Surtg, ur = 0g/0r, and ty = (D, 0g)/v, one sees
that F < 1 reflects the condition {tg) » T.,,. For nearby
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lenses (Dg > D), one obtains

(125T T;;bs v
16GM

M \YT
=13 x 10-3< ) (—">
0.5 M, 1yr

v or
X (100 km s_1><1 uas) ’ 9)

so that the condition F < 1 is fulfilled for é,
nbs s 10 yr.

The next-order corrections to the circle uf + pg = u3. ..,
can be determined by looking at the cases u, = 0 and p, =
0. For u, = 0, one obtains from equation (52)

4Ap)?
[p3 — (Ap)*1?
so that the threshold ¢, is reached for (p, > Ap)

T, 0
2 obs obs
Po.r or Dy < 402DL>

’I;bs
=3op. (1+F), (61)

F= (58)

< 10 pas and

D* = 0%, (60)

which reveals equation (54) for F < 1.
For py, = 0, one obtains
2 4Ap)* >

P T e ©

so that the threshold 6 is reached for

u(z) r= T::bsv <1 _ Tx':bs 05T>
’ orDy 40:D,,
’I(')bs v
5o (1= D), (63)
which reveals equation (54) for F < 1. This shows that F
measures the asymmetry for F < 1.

Having found that a significant variation occurs for pro-
jected source positions within a circle of radius uy ., rg, if
F < 1, the probability for having an event with a variation
of the centroid shift of more than §; within a given time T}
follows with ¢ = nu? ,,. rg from equation (27) as

4nG v (!
Vvar = 2 DS Tx’)bs J p(x)(l - x)dx . (64)
¢ o1 Jo

Like the photometric optical depth 7,, y,,, does not depend
on the lens masses.
For a constant mass density p(x) =

227G v
= Dy Ty, —
yvar,o cz S ‘obs 6T pO

D T, v
— -3 S _—obs
=43x10 (8.5 kpc)(l yr><100 km s>

% Po or \7! (65)
008 My pc™*/\1 pas)

An exponential fall-off of the mass density is discussed in

§5.

Po, OnNe obtains
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Values of y,,, as a function of the detection threshold
for bulge sources toward Baade’s window and perpendicu-
lar to the Galactic plane are given in Table 2.

4.3. Number of Events
4.3.1. Significant Centroid Shift

Using the criterion 6 > d;, one can calculate the event
rate in analogy to the photometric case, and count the con-
figurations where the source reaches the closest approach
to the lens within the observation time T, giving rise to a
“peak ” signature. As pointed out before, the corresponding
area is 0, = 2urrg T, v. If one compares this with the
area correspondlng to events that show significant variation
Oyar = nuT var?e, one sees that o, = (2/n)o,,, since
U7 var = Toos /(07 Dy) and ug = 0/ = rg/(07 Dy). Using
the results of the last sections, equations (64) and (65), one
obtains a constant event rate

1
r-¢p,2 f pON1 — X)d (66)
¢ or Jo

and for p(x) = py,

4G v
1—‘ozc_zl)sé_TPo

D v
=27x1073 5
x 10 <8.5 kpc><100 km s — 1)

x Po or \™ yr™l.  (67)
0.08 My pc™3/\1 uas

An exponential fall-off of the mass density is discussed
in§ 5.

Values of I" as a function of the detection threshold é; for
bulge sources toward Baade’s window and perpendicular to
the Galactic plane are given in Table 3.

4.3.2. Significant Variation of Centroid Shift

As pointed out before, the actual value of the centroid
shift is not measurable, only its temporal variation can be
observed. Since it may take much longer than the obser-
vation time to reach a centroid shift smaller than the detec-
tion threshold, there is a difference between whether one
considers 0 > d; or the variation of ¢ larger than 6. Let us
consider the probability for a significant variation larger
than J; and the closest approach between lens and source
to happen within T;;,. Rather than 2u; rg, the characteristic
width now becomes 2ur ., 75, and the area of source p0s1-

tions glvmg rise to a Varlatlon and a peak within T, is
o-var peak — 2uT var 'E ’I:Jbs v= ZTSI/)g 3/25 12 D 12 I'g, SO
that with equation (27)

,G -
—-1/23/2 ,,3/25—1/2
YVar,peak = 4 C_z DSM / Tol()s v / 5T /

X Jl p(x)/1 —xdx, (68)

where

M = FM”ZfM(M)dM : (69)
0
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and for p(x) = p, one obtains Note that no constant event rate I',,; = P,ur pear/ Tobs 1S

yielded, instead T, oc TY?. However, for T, — oo
8 |G —5 _ Ur o = Up, and I’ loses the T, -dependence.
_ — /273/2 ,,3/2 1/2 T,var T> var obs
Pvar,peak,0 = 3 \/:2 Ds M~ Tgp 0701 po The result for an exponential fall-off of the mass density is
discussed in § 5.
610" 4< M~z >< Dy > Values of y,,, ,ei @s a function of the detection threshold

(0.5M )~ 2 \8.5 kpc or for sources toward the Galactic bulge and perpendicular
" 32 to the Galactic plane are given in Table 4.
Tos v
X <1—br) <m> 5. MEASURING THE SCALE PARAMETERS OF THE
y GALACTIC DISK
Po ér \“ V2 . (70) Let us now leave the direction where the mass density is
0.08 M pc™2/\1 pas (approximately) constant and assume a general mass

TABLE 2
PROBABILITY OF OBSERVING A SIGNIFICANT CENTROID-SHIFT VARIATION

PROBABILITY OF OBSERVING A CENTROID-SHIFT VARIATION LARGER THAN 0 WITHIN T, = 1 yr FOR A GIVEN OBSERVED STAR

Bulge Stars toward Baade’s Window® Perpendicular to Galactic Plane®
THRESHOLD DIRECTION
O (uas) Yvar,0 Pvar, 0
) PR 43 x 1073 30 x 1074
S 8.6 x 1074 60 x 1073
10 i 43 x 107* 30 x 1077
100 . i 43 x 1073 30 x 10°¢

Note—The probability of observing a variation in the centroid shift larger than the threshold 8, y,,, o¢ po Tops v07 ', is shown for sources (1) toward the
Galactic bulge, eq. (65), and (2) perpendicular to the Galactic plane, eq. (90), with the reference values T, = 1 yr,v = 100 kms~*, and p, = 0.08 M pc™>.

 p(x) = py, and Dg = 8.5 kpc.

b p(x) = po exp {—xDg/H}. andDg > H = 300 pc.

TABLE 3
RATE OF EVENTS WITH 6 > 0

RATE OF EVENTS WHERE THE CENTROID SHIFT EXCEEDS THE THRESHOLD J; PER OBSERVED STAR

Bulge Stars toward Baade’s Window Perpendicular to Galactic Plane®
DETECTION THRESHOLD
O (uas) T (yr_l) r, (yr_l)
) N 2.7 x 1073 1.9 x 1074
S 54 x 107% 38 x 1073
100, 27x 1074 1.9 x 1073
100 oo 27 x 1073 1.9 x 10°¢

Note.—The rate of events I' = ..,/ T, oc po 097 * for which the centroid shift exceeds the threshold é is shown for sources
1) toward the Galactic bulge, eq. (67), and (2) perpendrcular to the Galactic plane, eq. (90), with the reference values v = 100 km
! and p, = 0.08 M pc~
* p(x) = py, andDg = 8.5 kpc.
® p(x) = po exp {—xDg/H},and Dg > H = 300 pc.

TABLE 4

PROBABILITY FOR SIGNIFICANT VARIATION AND PEAK

PROBABILITY OF OBSERVING SIGNIFICANT VARIATION AND PEAK WITHIN T, = 1yr FOR A GIVEN OBSERVED STAR

Bulge Stars toward Baade’s Window Perpendicular to Galactic Plane
DETECTION THRESHOLD
5T (l‘as) yvar,peak,O YVar,peak,w
1o 26 x 1074 14 x-107°
S 1.2 x 107* 63 x-107°
100 83 x 1073 44 x 10°°
100 ..o 26 x 107° 14 x 107°

Note.—The probability of observing a significant variation and a peak signature in an event y,,, yeu o€ po Tope v*/67 '/? during T,,,, = 1yr is
shown for sources (1) toward the Galactic bulge, eq. (70) and (2) perpendicular to the Galactic plane, eq. (92), w1th the reference values v = 100 km
st M‘”2 (0.5 My)~'2,and p, = 0.08 M pc™3
p(x) = po and Dg = 8.5kpc.
® p(x) = p, exp {—xDg/H} and Dg > H = 300pc
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density profile of the form

R—R z
p(R, z) = po exp {—TO — |—h|} , (71)

where R measures the radial position outward from the
Galactic center, z gives the coordinate perpendicular to the
Galactic plane, R, is the radial position of the sun, p, is the
local density of disk stars, d and h are scale lengths in the
Galactic plane and perpendicular to it, where

po~008 Mgy pc™®, d~35kpc, h~03kpc. (72

For a general direction characterized by the Galactic lon-
gitude and latitude (I, b), one has

z=XxDgsin b (73)

and

R=Ry./1+x*?cos®>b—2xycoshcosl, (74)

where y = Dg/R,. For b= +n/2 (toward the Galactic
poles), one obtains R = R, so that

D
p(Ra Z) = Po €Xp {_TL} s (75)
while for | = 0 (toward any latitude toward the Galactic
center), one obtains R = R,|1 — xy cos b|, and especially
for b = | = 0 (toward the Galactic center), R = | R, — xDg]|.
For [ =0 and sources on the same side of the Galactic
center as the sun, i.e., D; cos b < R,, the mass density reads

sin b cos b
P(R, z) = p, exp {—DL<| A L_ T)}

D
= po €Xp {—EL} (76)
where
sin b cos b\ !
H=<|h|— d) . (77)

For b = +arctan (h/d) ~ +4°9, the mass density remains
constant as H — oo, otherwise the mass density decreases
exponentially for |b| > |b,| or increases exponentially for
|b| < |by| with D, on the length scale H, which is equal to
h for b = +n/2 and equal to d for b = 0 (increase) or b = =«
(decrease), and a mixture of both scales in general.

With s = Dg/H, the exponential behavior given by equa-
tion (76) can be written in the form p(x) = p, exp {—xs},
where s > 0 (H > 0) means an exponential decrease, s <0
(H <0) means an exponential increase, and s=0
(| H| — oo) means a constant mass density.

The expectation value of the lens distance is yielded with
equations (35) and (37) as

425 — ) + 6 — 1)
=224 21—

<xp (78)

For sources at distances Dg > H, one has s > 1, so that
1
==, (19)

which means that
{Dpy)=H, (80)
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i.e., the expectation value of the lens distance is equal to the
scale parameter H of the exponential mass distribution.

For a constant mass density along the line of sight, the
optical depth 7, , is proportional to the source distance Dy,
so that the optical depth can be written as 75, = 4y Dj,
where 1, does not depend on Dg. With equation (35), the
optical depth for an exponential mass density reads

1
Ty = 315,0J e (1 —x)?. (81)
0

The evaluation of the integral yields
1 2 2 s
Tﬁ,s == 3T6’0[; - S_2 + s_3 (1 — e )]
2 2
= 3/10H|:1 i e‘s):|
s s

=34, HF(s) . (82)

For s> 1, ie, Dg> H, and exponential decrease, one
obtains

2
F)=1-~, (83)
so that
Té,s ad Té,oo = 32.0H i (84)

so that the optical depth measures the scale length H. This
implies that for different directions, different combinations
of the two disk scale parameters d and h are measured,
which means that with the information from several direc-
tions, d and h can be determined. The case of constant mass
density is revealed in the limit s — 0, i.e., H — oo, where
lim ) = E , (85)
s—0 S 3
so that 75 -, = 7;,. For s <0, the optical depth exceeds
75.0- Using Dg = R, = 8.5 kpc and d = 3.5 kpc, one obtains
for the optical depth toward the center of the Galaxy®

T5,—2.4(H = d = 3.5 kpc) = 2.675 o(Ds = 8.5 kpc) , (86)

i.e., about 2.5 times larger than toward Baade’s window.

For objects in the LMC (Dg = 50 kpc), one has approx-
imately (I, b) = (0, — =/2), so that one obtains for h = 0.3
kpc

T5167(H = h = 0.3 kpc) = 0.107; o(Ds = 8.5 kpc) , (87)
while for h = 1 kpc, one obtains
T5,50(H = h =1 kpc) = 0.347; o(Dg = 8.5 kpc) . (88)

Not only the optical depth turns out to be proportional
to the scale parameter H for an exponential fall-off of the
mass density and Dg > H, the probabilities for variations,
peaks, and variation and peaks also share this property.
Like the optical depth, for constant mass densities, the
probabilities for significant variation y,,.,, for a peak
Ppeak,0» and for a significant variation and a peak y,,; seax,0
(eqs. [65], [67], and [70]) are proportional to Dg, so
that Yvar,0 = 'Ivar,O DSa ypeak,O = )“peak,O DS, and yvar,peak,o =
j‘va\r,pea\k,ODS, where lvar,O? j‘peak,O’ and j'var,pea\k,O do not
depend on Dy,

8 Unfortunately, this view is obscured in the optical.
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With equation (64), one obtains for the probability of
significant variation for an exponential mass density

1
Vvar,s = zyvar’()J' e_sx(l — x)dx
(0]
11
= 2vvar,0|:; + 2 (e™s— 1):|

= 2Aar.0 H|:1 + % (e™®— 1):| , (89)
which yields for s > 1

=2var0 H . (90)

A similar relation holds for y,,,y, SINCE Ypear. = (2/70))ya,-
The probability for events to show a peak and significant
variation reads with equation (68)

1
yvar,peak,s = %yvar,peak,oj e—sx\/ 1 - xdx . (91)
0

For s > 1, the leading order of the integral yields 1/s,” so
that

Pvar,s = Pvar,0

—3
yvar,peak,s =~ yvar,peak,oo - Zlvar,peak,o H . (92)

6. THE EFFECT OF A LUMINOUS LENS

For a luminous lens that is not resolved from the source
where

9= 93)

is the ratio between the lens and the (unlensed) source
apparent luminosities, one obtains for the magnification (cf.

eq. [4])

2
g u®+2
w(u) = + , 94
) l+g (1+gu/u*>+4
which gives foru > 1
w) =1+ _2 95)
=T 0 v gt

For the centroid shift relative to a source at rest (e.g., Boden
et al. 1998) one obtains (cf. eq. [8])

u(l — gu/u® + 4)
Os(u) = — > O . (96)
u* + 2+ gu/u” + 4

However, if one subtracts the proper motion of the appar-
ent “source” object, i.e., the centroid of light composed of
source and luminous lens, one obtains the observed cen-
troid shift due to lensing as

() = Og(u) + —2 40 97)

1+

_u 1+g(u2—u«/u2+4+3)(9
l+g w+2+gqu/i2+4

(%8)

° Consider e.g.,, the expansion of . /1 — x.
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which gives foru > 1

o(u) %9

~—0,
1+gu *

i.e.,, the centroid shift is reduced by a factor 1 + g. Therefore
the threshold for a centroid shift larger than 6, becomes

Os
1+ g7’

and the threshold for a variation larger than ¢, during the
observing time T;,, becomes

ul%lended —

(100)

T, v
ublevr::ed — obs -, (101)
T’ (1+9)rDy

so that in the blended case the detection threshold d, is
effectively increased by a factor 1 + g. Therefore, the optical
depth 7; decreases by a factor (1 + g)?, the rate of events
where the centroid shift exceeds the threshold and the prob-
ability of a significant variation within T.,, decrease by a
factor 1 + g, while the probability of a significant variation
and a peak signature within T, decreases by a factor
J1+g.

Since the (disk) lens star is much closer than the source
star, one might think that g is expected to be a large
number. However, in a microlensing experiment, one will
only pick the bright source stars, while the lens star is
mostly a faint object. To obtain a more quantitative state-
ment, let us assume a simple luminosity function for the
lenses as given by Bahcall & Soneira (1980), equation (1),
and calculate the expectation value {(1 + g)~ ') that gives
the correction factor for the rate of events where the cen-
troid shift exceeds d; and for the probability that the cen-
troid shift varies by more than 6, within T;;,,. The results
are shown in Table 5. One sees that the effect is rather small
for observing bulge stars toward Baade’s window and
somewhat larger for observing perpendicular to the Galac-
tic plane. In the latter case, the values practically do not
depend on Dy if Dg > H. For V = 17 sources, the suppress-
ion due to blending is ~10% toward Baade’s window and
~30% perpendicular to the Galactic plane.

The luminosity function of Bahcall & Soneira (1980) does
not take into account a dip around M, =7 and a peak
around M, = 12 (e.g., Kroupa, Tout, & Gilmore 1993),
therefore overestimating the number of stars around M, =
7 and underestimating the number of stars around M, =
12. However, the values given in Table 5 depend only
weakly on the details of the luminosity function. The most
important question about the luminosity function is up to
what point at the low end it remains constant: Bahcall &
Soneira (1980) took it to be constant up to M, = 19 and
zero for M, < 19. A luminosity function that is flat
down to M, = 25 would yield <(1 + g)~*> = 0.79 (0.70) for
a V=17 (V =19) source in a direction perpendicular to
the Galactic plane, instead of {(1 + g)~!> = 0.67 (0.54); the
values for brighter sources are less strongly affected.

There is another effect: The formulae given above are
valid only if the luminous lens is not resolved from the
source star. If the angular resolution is 0,.,, which is ~200
mas for GAIA and ~ 10 mas for SIM (see, e.g., Lindegren &
Perryman 1996, for more details on GAIA, and Boker &
Allen 1999, for more details on SIM), then this limit is
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TABLE 5
THE EFFecT OF UNRESOLVED LUMINOUS LENS STARS

CORRECTION FACTOR FOR UNRESOLVED LUMINOUS LENSES AS A FUNCTION OF SOURCE MAGNITUDE

Bulge Stars toward Baade’s Window*®

Perpendicular to Galactic Plane*

SOURCE MAGNITUDE

V. Source 1 +9™H A+9)7"
12 0.99 0.90
15 0.95 0.78
17 (o 0.91 0.67
19 0.84 0.54

Note.—This table shows the effect of unresolved luminous lens stars on the number of astrometric microlensing events. The
rate of events with centroid shift 6 > §; and the probability of observing a significant variation larger than §; within the

observation time T,

obs

are decreased by a blending factor 1 + g. The table lists the expectation value {(1 + g) ) for several source

luminosities and a simple luminosity function as given by Bahcall & Soneira (1980). Note that there is no dependence on the mass

function.
? p(x) = py, and Dg = 8.5 kpc.
® p(x) = po exp {—xDg/H},and Dg > H = 300 pc.

reached for

-1/2
_ 100( —Gres M
200 mas /\0.5 M

D 1/2
X < I k; c) , (102)

and lens and source are resolved for u > u,.. This means
that the centroid-shift curves are those for a dark lens in the
outer region u > u,., and only influenced by a luminous lens
in the inner region u < u, irrespective of how large the
blend factor g is. By comparing u,., with the expressions for
ur, equation (41), and ur ,,., equation (55), one sees that u,,
is typically smaller than u; but can be larger or of the order
of ur .. Therefore the calculated optical depth is not
strongly affected by blending, despite the (1 + g)*-depen-
dence, because for most of the cases, the luminous lens is
resolved from the source. For the other signatures, the effect
of lens resolution plays a less important role, so that the
corresponding probabilities are somewhat decreased as a
result of the blending by the unresolved luminous lens.
Should the angular resolution limit be significantly
decreased to, say, ~ 10 mas for most of all discussed cases,
the lenses would be resolved and therefore the event rates
close to the dark lens case.

7. IMPLICATIONS FOR ASTROMETRIC SPACE MISSIONS

Upcoming space missions such as SIM and GAIA will
provide astrometric measurements with an accuracy of
~4-60 pas, thus enabling us to observe the centroid shifts
caused by microlensing of stars.

SIM will provide measurements with an accuracy of
about 4 pas on targets with V' < 20 that it is pointed to.
This will provide the possibility for high-accuracy astrom-
etric follow-up observations of ongoing microlensing
events. While there is a ~2% probability that disk stars
lead to a centroid shift of the same order, the variation of
this centroid shift during the event duration of the photo-
metric microlensing event is much smaller, so that the
astrometric signal due to the lens that has been responsible
for the original microlensing alert is measured. If one con-
tinues to measure the astrometric signal on larger time-
scales =10 yr, one has to take into account a

contamination due to astrometric microlensing by another
lens in the galactic disk.

Contrary to SIM, GAIA will perform an 5 yr all-sky
survey primarily planned to measure parallaxes with high
accuracy (Gilmore et al. 1998) but does not have the ability
of pointing the instrument to a selected target. To observe
the parallax ellipse, GAIA will perform several measure-
ments on each target per year. For sources with V' < 10, of
which there are about 200,000 objects in the sky, the
expected accuracy is ~20 pas; for sources with V' < 15, of
which there are about 25-35 million objects in the sky, the
expected accuracy is ~ 60 pas; and for sources with V' < 20,
of which there are about 1 billion objects in the sky, the
expected accuracy is ~ 1 mas.

Let us now use GAIA as an astrometric microlensing
survey instrument and estimate the expected number of
events. Concerning the direction of the observed stars, let us
be conservative with regard to the number of astrometric
microlensing events and consider a direction perpendicular
to the Galactic plane, where the event rate is close to
minimum. Let us first consider the bright (V' < 15) stars.
For an accuracy of 6, = 60 pas, one estimates with equa-
tion (41) u; ~ 30. Therefore, one expects an average event
duration (with eq. [47]) of {tg> ~ 3—4 yr. This is smaller
than the time of the mission T, so that events that reach a
certain threshold also vary approximately by the same
amount (ur ,,, ~ ur). We can therefore estimate the number
of events simply from the event rate per observed star
I'~3x107% yr~! (egs. [67] and [90], Table 3). Multi-
plying this with the 25-35 million stars with V' < 15, the 5
years of the mission and the blending factor of 0.78, one
obtains about 400 events during the lifetime of GAIA. For
the fainter stars (V' < 20), one obtains for §; = 1 mas an
event rate of ~2 x 10”7 yr~1, so that with 5 years of the
mission, 1 billion stars, and a blending factor of 0.47, one
obtains about 500 events. The very bright stars (V' < 10) are
not expected to contribute significantly because of their
small number. In total, this estimate gives about 1000
events from the GAIA mission. We have underestimated
this number by the assumption that the mass falls off expo-
nentially on a scale of 300 pc and by the assumption that all
stars with V' < ¥, are at VV = V|,. On the other hand, we
have overestimated that number by the assumption that a
signal is detectable when it exceeds the noise threshold (i.e.,
signal-to-noise-ratio of 1). There is also a dependence on the
sampling rate.
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However, we expect the underestimations and the over-
estimations to cancel to a big part, so that our estimate
indicates the right order. GAIA will thus observe a large
sample of astrometric microlensing events that can be used
to determine the mass and velocities of the lenses, and to
determine the scale length and height of the Galactic disk.

8. SUMMARY AND OUTLOOK

Astrometric and photometric microlensing differ in two
main points: First, the observed centroid shift is a function
of both the dimensionless impact parameter u and the
angular Einstein ring radius 6y such that for a given u, the
observed centroid shift is directly proportional to 6. On
the other hand, the observed magnification is a dimension-
less quantity that depends only on u and not on any other
scale. Second, for large angular separations between the lens
and the source, the centroid shift, being proportional to 1/u,
falls off much more slowly than the photometric magnitude
shift that is proportional to 1/u*. Because of the dependence
of the centroid shift on the angular Einstein radius, astrom-
etric microlensing favors lenses close to the observer, while
photometric microlensing favors lenses around halfway
between observer and source. Therefore, one gets the largest
centroid shifts from nearby objects, which are the Sun and
the planets first, whose effect has to be corrected for, and
then the disk stars. Because of the slower fall-off with the
dimensionless separation u in the astrometric case, detect-
able signatures occur for much larger angular separations,
so that the average duration of an event <{t;) can become
much larger than the observation time T,,. In the case of
luminous lenses this means that one can expect the lens to
be resolved from the source star in some of the cases that
show observable signatures. We have shown that the prob-
ability that a disk star introduces a centroid shift larger
than a given amount J; at a given time reaches unity for
0r ~ 0.7 pas for sources toward the Galactic bulge at a
latitude where the mass density of the disk stars is constant,
which is a good approximation for Baade’s window, while
this probability is about 2% for 6 = 5 pas (see Table 1).
Though there is some chance that the centroid shift of a
photometrically observed microlensing event, as observed
e.g., by SIM, is disturbed by disk star lensing (a 2nd lens),
this additional centroid shift is not expected to vary much
during the observation time (~ several months), so that the
effect expected is a slightly shifted position and the variation
of the centroid shift is determined only by the primary lens.
Only if one extends the observations to ~ 10 yr after the
peak, one has to take the contamination by disk stars into
account.

It is also interesting to examine the expected results from
a microlensing survey looking for centroid shifts rather than
the magnification of stars. As stated earlier, the largest cen-
troid shifts come from nearby objects, which gives an
opportunity to infer information about the disk stars. For

07 $10 pas and T, < 10 yr, <{tg) > T,,,. Since one can
only measure the variation in the centroid shift, not its
actual value, and since the astrometric signal does not drop
to zero within T, the condition that the centroid shift
exceeds the threshold d; cannot be taken as criterion for an
event. Instead, one has to rely strictly on the criterion that
the centroid shift varies by more than the threshold 6. For
{tgy < T, as for most photometric microlensing events,
these two criteria become equivalent. The probability that a
source star in the Galactic bulge toward Baade’s window
shows a centroid shift variation larger than 5 uyas within one
year is ~ 1073, which is about 3 orders of magnitude larger
than the probabilities for photometric microlensing (see
Table 2). Among the events that show significant variations,
only a fraction (10% for 6, = 5 pas) will have the closest
angular separation between the lens and the source within
the observing time, which will result in a clear “peak ” sig-
nature, namely an observed change of sign of the com-
ponent of the centroid shift parallel to the relative proper
motion between lens and source, and a maximum of the
centroid-shift component transverse to it. Since every event
“peaks” once, the number of events that reach the peak
within T, is related to the event rate, while events that
show significant variations only can show this variation in
subsequent time intervals.

For an exponential decrease of the mass density along the
line of sight (as it would be the case for lines of sight at high
Galactic latitudes), the probabilities for events are pro-
portional to the scale parameter in that direction if the
source stars are at a distance of a few times the scale param-
eter or more. For sources perpendicular to the Galactic
plane, the probability for a variation by more than 5 pas
and a peak within T, =1 yris ~6 x 10~¢ (Table 4). By
observing astrometric microlensing events in different direc-
tions, one can not only infer information about the total
mass and the mass spectrum but also determine the scale
length and scale height of the Galactic disk.

An advantage of astrometric over photometric obser-
vations is that the lens mass, distance, and velocity can be
extracted individually from the observations (Hog et al.
1995; Miyamoto & Yoshii 1995; Walker 1995; Paczynski
1998; Boden et al. 1998).

We expect ~ 1000 astrometric microlensing events to be
detected by the GAI A mission during its lifetime of 5 years.
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