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Abstract. Gravitational lens models for observed lensing sys-
tems are often based on quasi-elliptical lenses. The use of ellip-
tical mass distributions is motivated by observations of galaxies
and by the assumption that mass follows light. Elliptical mass
distributions are also expected on theoretical grounds. On the
other hand, since elliptical matter distributions are in general
more difficult to handle, quasi-elliptical lens models, in which
the isopotential curves are ellipses or in which an external shear
component is added onto a spherical deflector, are often used for
model fitting or for statistical lens studies. However, elliptical
potentials correspond to unphysical matter distributions if the
ellipticity is large. In this paper we derive explicit lens equations
for a special type of elliptical matter distributions, the ‘isother-
mal’ ellipsoids. Their matter distribution forms a natural gen-
eralization of isothermal spheres, one of the most commonly
used models in lens theory. We consider the singular and the
non-singular case. For both, the deflection angle is derived in
closed form, and it is particularly simple for the singular case.
The lens equation in the singular case can be reduced to a one-
dimensional equation, making its solution particularly easy. We
derive the critical curves and caustics of these isothermal el-
liptical lens models and obtain a complete classification of the
topologies of the critical curves and the caustics. Cross sections
for multiple imaging are derived.

Especially the singular isothermal ellipsoid provides a very
convenient lens model, which is not much more complicated
to handle than quasi-elliptical models, and we expect that the
explicit equations derived here will be useful for future work.
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1. Introduction

Gravitational lenses with elliptical mass distribution have not
been treated extensively in the literature. From the early work
of Bourassa et al. (1973) and Bourassa & Kantowski (1975,
see also Bray 1984), it became evident that even the calculation
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of the deflection angle from a lens with elliptical surface mass
density is not trivial; the aforementioned authors introduced
a complex formulation of lens theory to simplify the analytic
treatment. Schramm (1990) calculated the deflection angle for
elliptical mass distributions within the ‘standard’ vector formu-
lation of lens theory; however, the resulting expressions for the
components of the deflection angle are fairly complicated and
can be used only for numerical work. For these reasons, lenses
with elliptical surface mass densities have been used mainly for
detailed numerical modelling of individual lens systems (see,
e.g. Young et al. 1981a,b; Narasimha et al. 1982; Falco et al.
1991), except for an early statistical study (Bourassa & Kan-
towski 1976).

It is well known that the properties of lenses with axially-
symmetric surface mass distributions (‘symmetric lenses’
henceforth) are qualitatively different from those with more re-
alistic (‘asymmetric’) matter distributions (e.g. the degeneracy
of the tangential caustic, see Schneider et al. 1992, hereafter
SEF, Sect. 8.1). This means that the application of symmetric
lens models can yield misleading results.

Faced with the dilemma that (easily treatable) symmetric
lenses have non-generic properties and lenses with elliptical
surface mass densities are difficult to investigate, a number of
non-symmetric lens models were constructed whose properties
resemble more or less those of elliptical lenses: (1) Symmetric
lenses with external shear (Chang & Refsdal 1979,1984; Kovner
1987a; Kochanek 1991a); (2) Lenses with elliptical potential
(Kovner 1987b,c; Blandford & Kochanek 1987; Kochanek &
Blandford 1987; Kochanek et al. 1989); (3) Multipole expan-
sions of elliptical lenses (Schneider & Weiss 1991; see also
Kochanek 1991b). Fortunately, it turns out that all these mod-
els have the same general properties as elliptical lenses, and
since they are much easier to handle, they have been used for
modelling and statistical studies. Nevertheless, this approach
has its drawbacks; for example, if the ellipticity in lenses with
elliptical potentials becomes too large, the corresponding mass
distributions obtain unphysical shapes.

In this paper we want to present a family of lens models with
homoeoidal elliptical surface mass distributions. These models
are a natural generalization of the isothermal sphere models
widely used in lens theory, and are therefore termed ‘isothermal
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elliptical lenses’.! As we shall demonstrate, these lens models
admit a fairly detailed analytical investigation. The deflection
angle as a function of the impact vector of a light ray is given
explicitly; simple expressions for the deflection angle, the Jaco-
bian matrix, critical curves, caustics and cuts are obtained for
the case with zero core size. For models with finite core size, the
resulting expressions are more complicated; still, it is possible
to obtain a full classification of these models in terms of their
critical curves and caustics.

The rest of this paper is organized as follows: In Sect.2,
we introduce our basic notation and the classes of lens models
treated in this paper. Sections 3 and 4 provide analyses of models
with vanishing and finite core radius, respectively.

After the work reported here had been completed, we learned
that a similar project was undertaken by Kassiola & Kovner
(1993). They also provided an analysis of elliptical isothermal
lenses, with special emphasis on a comparison between ellip-
tical matter distributions and elliptical potentials. In particular,
they pointed out that elliptical potentials become completely
unrealistic if the axis ratio becomes large, since the correspond-
ing mass densities attain unphysical shapes. Our emphasis is
directed more towards the critical structure of elliptical lenses.
Where there is overlap between our papers, the results agree.

2. Gravitational lensing and isothermal galaxy models

2.1. Gravitational lensing

For gravitational lensing, we use the same notation as in SEF.
Briefly, the lens equation reads
D .
n= 56— Dub(®) M
d
where 77 denotes the source position, £ the impact vector of the
light ray in the lens plane, both measured with respect to an

‘optical axis’, &(&) is the deflection angle, related to the surface
mass density ¥(€) by

i e—¢
b
NSy

and Dy, Ds, Dys denote the angular diameter distance to the
lens, the source, and from the lens to the source, respectively.

The dimensionless lens equation is obtained by introducing
a (conveniently chosen) length scale & and defining

a(§) = ¢, @

¢ L D.
r=> =L  with = 7= )
o v o " 60
a(m) - Dd ds (£ )_ / K,( ) x’ dzm/ (3)
Dy lw A
. _ (5011!) _Cz_'DL_
with k(x) = Yo Do = 471G DyDys

' Throughout this paper, the term ‘isothermal’ should not im-

ply a dynamical model for the mass distribution, but should
merely indicate that the surface mass density asymptotically
decreases as 1/(distance).
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as
y=z—a) C))
We also introduce the deflection potential
1 / ! 2.0
P(x) = — K(zIn|x — z'|d°z" 5)
™ JR2

which is related to the deflection angle and the dimensionless
surface mass density x by

a(x)=Vi(z) , O
V=26, ™
and the Fermat potential

1 2
@,y =@ -y —¢P) , ®
in terms of which the lens equation becomes
Vo(z,y)=0 , €))

where the gradient is to be taken with respect to .
The image distortion described by Eq.(4) is expressed in
terms of the Jacobian matrix
0 1-k-— —

A( )__ _y ( ! "2

1_“71) , (10)

-"2

the second step being a decomposition into the local surface
mass density x(x) (convergence) and the shear components

1
M= iw,u Y2 , (11a)
T2=Y%n=%n , (11b)
Y=+ (11¢)

where indices separated by a comma denote partial derivatives.
The magnification p(x) of an image (of an infinitesimally small
source) at x is

1

T—rr =7 42

-1
) = [det A(a:)] =
The time delay between two images at (1) and @ is given by

edt=(1+ )5 350 [qa(a;“) )—cb(w<2>,y)] (13)
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2.2. Isothermal galaxy models for lensing

If one considers a galaxy as a spherically-symmetric, self-
gravitating concentration of stars behaving like an ideal gas in
hydrostatic equilibrium, one obtains a differential equation for
its radial mass distribution (Binney & Tremaine 1987, Eq.(4-
115b)). One simple and analytic solution of this equation is
called singular isothermal sphere (SIS). Its surface mass den-
sity, projected onto the lens plane, is given by

v? 1

(6 = 2GE (14)

where v is the velocity dispersion along the line of sight. We
have used polar coordinates & =: (€ cos @, £ sin @) in the lens
plane. Choosing the length scale

& = 4#2—2 DdT,idS (15)

and z := £/&, Eqs.(3) and (4) yield

K@= 16)
2z

and the lens equation becomes

y=x— I"’"?l an

Due to the simplicity of this equation, the SIS is frequently used
as gravitational lens model (e. g., Turner et al. 1984; see Sect.
8.1.4 of SEF). We mention in passing that this gravitational lens
also fits to a simple disk model for spirals known as Mestel-disk
(Mestel 1963), if the symmetry axis of the model is parallel to
the optical axis.

Analytic solutions of the aforementioned differential equa-
tion without the central singularity are not known. In lens the-
ory, a frequently used surface mass density for an ‘isothermal’
sphere with finite core radius & is

sl m
2G e+ \1+82/82
where £ = v? /(2G&,) is the central surface mass density. The

corresponding dimensionless surface mass density is obtained
with the length scale (15), as

(8

. (18)

€

with z,=—>—

1
2y/z? + 22 €o

We shall term this lens model nonsingular isothermal sphere
(NIS).

The generalizations of the isothermal sphere lens models
to more realistic, elliptical lenses is now straightforward: we
replace in Egs. (14) and (18) the radial coordinate £ by

C=\/E+PG

Kk(x) = (19)

(20)

287

which is constant on ellipses with minor axis ¢, major axis ¢/ f,
and thus axis ratio f. Hence, we define the surface mass density
of the singular isothermal ellipsoid (SIE) to be

i 1 B \/Tvzl
YO %6 Vavra 26 ¢

2la)

where the normalization is chosen such that the mass inside an
elliptical iso-density contour for fixed ¥ is independent of f. The
value of the axis ratio f is taken from the interval 0 < f < 1;in
many of the calculations in Sects. 3 and 4, f < 1 is asumed, and
the symmetric model is obtained in the limiting case f — 1.
Using the same length scale as in the symmetric case, Eq.(15),
we find for the dimensionless surface mass density

vi_ _Vf

K‘(-'L" (P) = 2:L'A(Q0) = %’ ’ (21b)

where we have used the definitions

A(p) = \/cos2p + f2sin*p 2le)
: :

b= = =zA = /2?2 + 222 21d
& \ &1+ fPay (21d)

Moreover, this corresponds to the surface mass density of a
Mestel-disk with its symmetry axis non-parallel to the optical
axis.

We generalize the NIS now in the same way as the singular
models. Introducing again a core ‘radius’ (;, with its dimen-
sionless value being defined as b, = (./£o, we obtain for the
surface mass density

v VF 2o

20w TEre T Vivora 0
with £p = v/fv?/(2G¢), ie.
ety = — (22b)

2,/ 40

The lens model described by this surface mass density will be
called non-singular isothermal ellipsoid (NIE). It fulfills the
same ‘constant-mass’ property as the singular model if we keep
the core radius fixed.

Isothermal lenses have the further drawback of having infi-
nite total mass. This problem can be cured if the mass density
beyond some tidal ‘radius’ drops faster than ¢ ~2. If this tidal
‘radius’ is much larger than the typical length scale { where
strong lensing occurs, this cut-off does not affect the strong lens-
ing properties of the deflector. A possibility for such a cut-off
has been outlined in Kassiola & Kovner (1993). An alternative
to obtain elliptical lenses with finite mass has been employed
by Bourassa & Kantowski (1975) and Narasimha et al. (1982);
they considered an ellipsoid with sharp boundary.
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3. The singular isothermal ellipsoid

In this section we discuss the properties of the SIE. This is a two-
parameter family of lens models, where one of the parameters,
the velocity dispersion, can be scaled out; thus, the only non-
trivial parameter is the axis ratio f. For later purposes, we also
define

ff=v1i-f . (23)

3.1. Deflection potential and lens equation

Poisson’s Eq. (7), written in polar coordinates

1 2

_2<$Q£) 10 _, o VP 24)

0z \" Oxr/ x%0p? zA(p)

can be reduced to the ordinary differential equation

- d2)

e il L e}
de*  A(p)

by the ansatz v (z, p) =: z¢(). This equation can be solved
using Green’s method. The resulting deflection potential?® is

Yz, ) = [fi,f
, (26a)
X [sin parcsin(f’ sin ) + cos ¢ arsinh <f7 cos go)]
= \/fj_jx [| sin | arccos A + | cos go|arcosh-?—] (26b)

¥ describes the deviation of the deflection potential from that
of the SIS, the latter being ¥ (z) =T Figure 1 shows a curve of
constant 1.

The gradient a = V1 yields the deflection angle and the
lens equation

y=x— \J/c_/f [arsinh (? cos <p> ey +arcsin(f’ sin ) ez] (27a)
= — £'If
f A (27b)
X [sgn(cos ©) arcosh7 e + sgn(sin ) arccos A ez]

of the SIE, where e; is the unit vector in the direction of z;.
Because of

im | Y arsinn (£ ] _
}1_)m1 [ F arsmh( 7 cos (p) =cosy , (28a)
}iml [g arcsin(f’ sin (p)] =sinp (28b)

the deflection angle of the SIE tends to that of the SIS in the
limit f — 1.

2 Itis indeed the correct physical solution of Eq.(7), since the

deflection angle (27a) is equal to that obtained from (5) and (6),
as will be shown in App.B.
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Fig. 1. Iso-density contours for the SIS (dashed curve) and the SIE
(dash-dotted line) with f = 0.6, for the same value of x in both cases.
Also plotted is a curve of constant deflection potential v (solid curve),
which is much rounder than the corresponding iso-density contour

3.2. Magnification, critical curve, cut and caustic

Differentiation of the lens equation yields the distortion matrix
A = 0y/0x. As a function of k and ¢, it reads

. 2
A=(1—2nsm @ 29)

K sin(2p)
K sin(2p)

1 —2kcos?y

It is somewhat surprising that this equation is formally identical
to the corresponding equation for the SIS. As a consequence, the
expressions for the magnification, p = 1/det A =1/(1 — 2k),
and the trace of A, trA = 1 + det A, are also formally identical
for both, SIE and SIS. The components of the shear are y; =
—kcos(2p) and v, = —k sin(2yp).

As in the case of the SIS, due to the singularity of the sur-
face mass density at the center of the lens, we find a region in
the source plane where multiple images exist, but which is not
enclosed by a caustic. According to Kovner (1987a), we call
the curve surrounding this region the cut. If we remove the sin-
gularity by introducing a finite core radius (to be done in the
next section), the cut will transform into a caustic. Therefore, a
cut is the ‘limiting case’ of a caustic for vanishing core radius.
Sources on the cut have an ‘infinitely faint’ image at the posi-
tion of the mass singularity, i.e. at the origin of the lens plane.
This splits into two images with the typical behaviour at critical
curves once we introduce a finite core radius. Mathematically,
the cut is therefore given by

y(p) = i’i’,}) Yy, p) = —a(p)

' (30)
= ——\J/c—z [arsinh (f7 cos <p) e + arcsin(f’ sin ) e,
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Fig. 2. Cut and caustic of the SIE. The caus-
tic shows cusps on the axes. The dashed
1 0 1 1 0 i lines give cut and caustic of a different lens
B model called SIE-M1. This model will be
Y, y 1 described later in this section

The critical curve is given by det A(x) = 0 or k = 1/2, or
x = v/f/A(p). Inserting this equation into the lens Eq. (27a),
we obtain a parametrized equation for the caustic,

Y = % CoS — %—,Tarsinh(l; cos <P> ) (3la)
Yo = % singp — \/T/T arcsin(f' sin ) (310)

Hence, in contrast to the SIS, the caustic of the SIE does not
degenerate into a point. Figure 2 shows cuts and caustics for
different axis ratios.

Next, we calculate the intersections of cut and caustic with
the axes. For the cut, we obtain

yp =+s; with s := ?arcosh% , (32a)
Yo =+s; with sy := g arccos f (32b)

The intersections of the caustic with the axes, i.e. the positions
of the cusps, are given by

y1=i(sl—\/?> )

(33a)

1
Ya :F(Sz ﬁ) (33b)
The upper signs in these equations refer to those points of the
critical curve which are on the positive half-axes. We can see
that the cusps on the 1-axis always fall within the region sur-
rounded by the cut. The cusps on the 2-axis are inside (out-
side) the cut if f > fo (f < fo), where f; is the solu-

tion of the equation 2fp arccos fo = 1/1 — f2. Numerically,

fo = 0.3942 .. .. Images with given magnification p lie on el-
lipses with = v/fu/[(u — DA].

3.3. Solution of the lens equation

It appears impossible to invert the lens equation of the SIE ana-
lytically. We can only describe a (simple) procedure for finding
the images of a given source position. There is no need for nu-
merical methods like the grid-search algorithm, since the lens
equation can be reduced to a one-dimensional equation: If we
multiply the first component of the lens Eq. (27a) with cos ¢
and the second with sin ¢, we find for the radial coordinate

T = Y1 COS @ + Y3 8in @ + P(p) (34
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This is reinserted into the lens equation to obtain a one-
dimensional, implicit equation for ¢,

amnn(cong)|
[y1+ 7 arsinh 7 cos || singp

- [yz + % arcsin(f’ sin <p)] cosp=0

(35)

This equation can now be solved with root-finding-algorithms.
For a source ‘outside’ of the cut, this equation produces a spu-
rious image (the second image, for an explanation see below),
which must be dropped.

In the special case of a source on the positive 1-axis, we
can find an image with ¢ = 0 and = = y; + s;. For y; < s,
i.e. a source inside the region surrounded by the cut, we find a
second image at ¢ = 7 and = = s; — y;. If the source lies also
‘within’ the caustic, there are two further images away from the
axes. These image positions can only be found by solving the
implicit Eq. (35). The situation is identical for the 2-axis. We
only have to replace 0 by 7/2, 7 by 37/2 and s; and y; by s;
and y,, respectively.

3.4. Image positions and numbers

In this paragraph we want to describe qualitatively the image
positions, numbers, and some other properties for given sources.
Due to the symmetry of the lens, we can restrict the treatment
to sources in the first quadrant. We will move source positions
from ‘far outside’ to the origin of the source plane, i.e. behind
the center of the SIE. Moreover, we assume to cross the cut first
and then the caustic. We treat the other case later, which can
occur only for f < fo.

A source in the ‘outer’ region has only one image, which
is in the first quadrant of the lens plane. This ‘first image’ has
positive parity and small magnification p 2 1. Independently
of the source position it is always within the first quadrant and
stays ‘outside’ the critical curve; hence, its parity stays positive.
If the source crosses the cut, a ‘second image’ appears in the
third quadrant very close to the lens center. Since . = 1/(1-2x),
it is very faint. At the crossing, the first image is magnified by a
factor of approximately two. The second image is always found
within the critical curve, and its parity is negative. The even
number of images is due to the mass singularity.

Crossing the caustic, we will find two new ‘critical images’
in the second quadrant. Of course, one of it lies ‘within’ the criti-
cal curve, having negative parity, and the second one is ‘outside’
with positive parity. The absolute value of the magnification is
very high due to the properties of fold singularities, but de-
creases rapidly when we move the source towards the origin.

In the special case of a source at the origin of the source
plane, we find four images on the axes of the lens plane at
z; = +s; and x, = *£s,. The images with negative parity —
the second image and one of the critical images — lie within
the region enclosed by the critical curve and on the 2-axis. The
others are outside the critical curve, on the 1-axis.
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Obviously the second image and the critical images appear
in opposite sequence, if the source crosses the caustic first and
the cut afterwards. Having a source in one of the other three
quadrants, we must interchange the image positions according
to the symmetry of the lens model.

3.5. Large magnification, time delay and cross sections

A source close to, but inside a caustic curve has two images close
to, and on opposite sides of the corresponding critical curve. The
universality of the lens mapping close to fold singularities (e.g.
Blandford & Narayan 1986) allows one to obtain simple rela-
tions between the magnifications of the images, their separation
and their time delay. After some tedious, but straightforward al-
gebra, one obtains for the magnification by applying Eq. (6.20)
of SEF to the SIE

4/fA 1

|/14| = flzl sm(2g0)| g ) (36)
and for the time delay 6t — from Eq. (6.21a) of SEF

4 12) o
cét =271 + zd)v— DaDas £7|siny)| (6z)® 37

¢t D VA
where 6z is the separation of the images in the dimensionless
units. Interestingly, both relations are ill-behaved in the limit
f — 1(.e. f’ — 0); this is due to the fact that these relations
have been derived for a generic fold singularity. For the spherical
case f = 1, this singularity degenerates into a point, and the
universality relations break down. Also note that both relations
behave peculiarly for ¢ = 0, 7/2, 7,37 /2; there, the source is
near a cusp singularity, and again the universality relations for a
fold break down. If we insert typical values into these formulae,
e.g. v = 220km/s, zqg = 0.5 and 25 = 2 in an Einstein-de Sitter
universe with Hubble constant Hy = 100~ km/(s Mpc), and
a SIE with f = 0.8 at ¢ = 7 /4, we obtain the approximate
relations

72
|l =~ 55 (38a)
15h / 60 \°

66 denotes the angular separation between the images. Hence,
two images with a magnification |u| = 20 have an angular sep-
aration of about 0”36 and a time delay of roughly three hours
(h=0.5).

We consider next some lensing cross sections. Briefly, a
(dimensionless) cross section ¢ is related to the physical area
in the source plane & via & = n2o — for an introduction into the
concept of cross sections see SEF, Sect. 11.1.

Again due to the universality of the lens mapping near fold
and cusp singularities, the cross section o(p, > ) for a point
source to be magnified by more than p (for 1 — oo) follows a

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994A%26A...284..285K

rIO0AAZA T 7837 TZ85K!

R. Kormann et al.: Isothermal elliptical gfavitational lens models

3
L\ o,
o 2
:
1
&
0
0.2 04 0.6 0.8 1

Fig. 3. Cross sections of the cut (o) and the caustic (o) for the SIE. The
cut and caustic cross sections are identical to the two- and four-image
cross sections, if f > fo

simple relation (Blandford & Narayan 1986; Mao 1992; Schnei-
der & Weiss 1992). Applying Egs. (11.21) and (11.22) of SEF
to the SIE, we find

4 16V61+f 1

U(.U'p>#)=;2'+TT'UJ5/2 (39)

Interestingly, the u~2-component (the contribution from folds
and the inside of cusps) is independent of f. On the other hand,
the y1~3/2-component (the component from the outside of cusps)
diverges for f — 1, since in this limit, the whole caustic (includ-
ing the cusps) degenerates. This does not imply that o diverges
for fixed p and f — 1; it just means that the value of 1, beyond
which the cusp contribution in Eq.(39) is a good approximation,
diverges as f — 1.

The area enclosed by either cut or caustic can be calculated
as

(40)

a=4leyz<A>|j—il{dA ,

due to the symmetry of the lens model. Inserting Eqgs. (31) and
(32), we find in turn for the area enclosed by the caustic

af ' /V1I=A? N
oy = F . (T — arccosA)TdA 41
and the area enclosed by the cut
1
o 4f arccos A A 42)

RV

which are shown in Fig. 3. For f > fo, o1 and o, are the cross
sections for four and two images, respectively.
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3.6. Multipole expansion

We can also use the multipole expansion developed by Schnei-
der & Weiss (1991) to approximate the elliptical mass distri-
bution of the SIE. In this paragraph we want to consider the
multipole expansion up to the quadrupole term. In principle itis
possible to treat the whole expansion analytically, though it be-
comes very cumbersome to find the expansion coefficients. We
summarize only some interesting results without giving details.

The surface mass density of the SIE-M1, as we call this lens
model, is given by

1
A, ) = 5= [k +3a cos(2cp)] : (43)
where we have used the definitions
2WTK'
k(f) = \/z ) (44a)
— 4\/7 / 2 ! .
A= 57m [2E 1+ K ] ; (44b)

E’' = E(f") and K’ = K(f') are the complete elliptical inte-
grals of the first and the second kind as defined by Gradshteyn
& Ryzhik (1980), Egs. (8.112).

Typical for the expansion up to the quadrupole term is the
dumbbell-shaped distortion of the originally elliptical mass dis-
tribution shown in Fig. 4.

The deflection potential is given by

U(x, ) = kx — axcos(2p) ; 45)
the lens equation reads

y1=(@+3a—k)cosp —2acos’p (46a)
y2 = (z — 3a — k)sin ¢ + 2asin® ©w (46b)
We find for the distortion matrix

a=("einan” S @)

Hence, the expressions for the magnification, the shear and the
trace of A can be adopted from the SIE. We note here in passing
that the validity of these equations can be shown by induction
for every order of expansion. The critical curve is parametrized
by the equation

T =k+3acos(2p) , 43)
the corresponding caustic is given by

y1 =4acos’p (49a)
Y2 = —4a sin® © (49b)
or

Yo = j:[(4(1)2/3 _ y%/a]a/z 50)
The cut of the SIE-M1 reads

Y1 =Ba —k)cosp —2a cos’ w (51a)
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4, Nonsingular isothermal lens models

Now we want to discuss the mathematical properties of non-
singular isothermal lens models. In the case of a symmetric lens
it is possible to obtain analytic results for a very general class
of lens models. This is, for example, done in SEF, Sect. 8.1.
But since the lens model which we call non-singular isothermal
sphere (NIS) is not well-known, we summarize some proper-
ties of this model in the first part of this section. In the second
part we generalize again the symmetric lens to the non-singular
isothermal ellipsoid (NIE).

4.1. The nonsingular isothermal sphere

The surface mass density of the NIS is given by Eq.(19). The lens
equation becomes one-dimensional in this case. With y = eyy
and = = eyx (ey := y/|y|), the deflection angle is

1
a(x)z—\/x2+x%—ﬂ=w ,
T T T

(56)
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~
— f=0.6 f=0.4
1 1
N
R0 X 0 | '
Fig. 4. Iso-density contours k = 1/2
-1 -1 for the SIE-M1. The dashed lines
= are the corresponding iso-density con-
~ 7 tours for the SIE. Due to the expres-
sions for the magnification given in the
-1 0 1 -1 0 1 . . : .
text, these lines coincide with the crit-
X 1 X 1 ical curves for both lens models
¥z = (=3a — k) sin ¢ + 2asin’ ¢ (51b) )
Cut and caustic of the SIE-M1 are plotted in Fig. 2 as dashed
lines for a comparison with those of the SIE. 08 Xt
The lens equation of the SIE-M1 is easier to solve than for = 06
the SIE, because we are left with a polynomial in cosp =: ¢, ><'f )
namel .
y 04
16at* — 8ay;t® + (|y|*> — 16a%) t* + 8ayit —y7 =0 . (52) 02 *
The z-component is given by 0
T=Y1CosQ+yzsinp +k — acos(2p) (53) 0 0.1 0.2 0.3 04 05
Xe
The cross sections for caustic and cut are Fig. 5. The radii of the critical curves of the NIS and the radius of the
2 radial caustic y; as a function of the core radius
oy =6ma” (54)
1 ) ) where we have used the dimensionless ‘mass’
oy = 57‘1’ (2k —3a ) (55)

(57

T
m(z)=2/ z'r(z')dz’ = \/2* + 22 — 2,
0

Note that z can become negative in these equations. The deflec-
tion potential is given by

W(x)=r/2?+ 22—z In (xc+\/x2+x§) (58a)
=4/22+ 2 - accarsinhl—xxg| —zcIn|z| (58b)

which is found by integration of the deflection angle.

There are two different critical curves, called radial and tan-
gential critical curves, provided z. < 1/2 (for a detailed discus-
sion see SEF, Sect. 8.1). The radius of the radial critical curve
is given by dy/dx = 0, or

1
zl= 3 <2xc —x? —xc\/x§+4zc>

The lens equation can be reduced to a third order polynomial
equation in x, namely

(59)

3 —2y2* + (y* — 1 +23.) T — 27y =0 (60)
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4.2.1. Lens equation

The lens equation of the NIE, with surface mass density (22b),
is found by using the complex representation of lens theory to-
gether with the results of Bourassa & Kantowski (1975) and
Bray (1984). Their results are summarized in App.A , whereas
the detailed calculations are given in App.B. Splitting the com-
plex deflection angle into its real and imaginary parts, we obtain
for the lens equation

v,

! , (620)

N =21 —

Q_

critical curves caustics
1 b,=0.1 0.4 b,=0.1
RN 0 >‘:: 0
1 -04
-1 0 1 -0.4 0 04
X, N
06 b.=0.32 b=0.32
: 0.1
02
) 1 = 0
02
1 Fig. 6. Critical curves and caustics for the
01 NIE with f = 0.8. In this figure, we have
-0.6 ) < f¥?/2, meaning that both critical
0.1 0 0.1 curves and their caustics exist. The num-
0.6 0.2 0.2 0.6 bers in the figure correspond to the notation
xl y 1 in the text
The radius of the tangential critical curve which maps into a
= —(argR — argS 62b
point at y = 0 is found by solving this polynomial for y = 0, 2= + 2f! (arg ags) (626)
giving with
2
n= 1=z 61) (FVP+B £a) + 13
. . @ = (fz2 £ f'box1)? + f/2022% (62c)
Figure 5 shows the dependency of x;, x; and the radius of the c1 c2
radial caustic y, on the core radius.
vr Ri=23+ f*0 — f2 (P +02) — 2f2f\JB + B2y , (624)
_ 2.2 212 o:
4.2. The nonsingular isothermal ellipsoid = foa’ — [ — 2f f'bexs (62e)

Of course, for b, = 0, these equations reduce to the lens equation
of the SIE.

The complicated deflection angle causes strong limitations
on an analytic treatment of this model, but it is possible to find
the critical curves and the caustic structures without numerical
methods. This will be done below.

4.2.2. Shear

As for the lens equation, we can split the complex shear leading
to
= [ (&t - =)

- P, (63a)
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critical curves caustics
0.6 b=f"12 01 b=f*12
02
RN RS 0
-0.2
1
1 '
-0.6 -0.1
0.6 0.2 0.2 0.6 -0.1 0 0.1
% N
0.6
b.=0.38 0.1 b.=0.38
0.2
~ 1 0
= N
-0.2 (§ I
Fig. 7. Critical curves and caustics of
-0.1 the NIE with f = 0.8. The condi-
0.6 tion b = f3/?/2 is fulfilled in the up-
0.6 0.2 02 0.6 -0.1 0 0.1 per panels. This means that the caus-
tics show an hyperbolic umbilic. Here
X y also be < f*2/(1 + f) - so both crit-
1 1 ical curves and caustics exist
Yo =22z 1T, P (63b) 4.2.3. Critical curves and caustics
with Equations (64) are very helpful for studying the behaviour of
the critical curves and the caustics of the NIE. We solve the
VT equation D = (1 — k)> — 4 = 0 in terms of & to obtain the
P = FAgd —2f2f12p2 (xz _ xz) + f14ps X intersections of the critical curves with the axes. For the 1-axis,
ey ¢ (63c) we end up with a third-order polynomial in r; (the index ‘1’

x %(xf+f4x§)—l—+2—fz b2+b§+fbc]

These expressions become much simpler if we use « as inde-
pendent variable and restrict the treatment to the axes of the
coordinate system. We obtain on the positive 1-axis

2737,
=K =0 , 64
and on the positive 2-axis
26 (64b)

=k, =0
M T b/ v

indicates that we are dealing with the intersections between the
caustics and the 1-axis), which can be factorized,

2
D ( Ll 2bcm)
(65)
= (£ 4 2oy — 20721 ) (/2 + 2bss — 4ber?
The positive roots of the equation D = 0 are
f3/2
K/l’] = -m 5 (660)
1 4f3/2
Kip=—|1+4/1+ (66b)
y 4 bc
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critical curve caustic
03 b.=0.45 0.06 b.=0.45
0.1 0.02
= N

-0.1 -0.02
03 -0.06

-0.3 -0.1 0.1 03 006 -002 002 006

X, B!

Fig. 8. Exterior critical curve and first caustic for the NIE with f = 0.8. Due to the fact that the core radius lies now between Vil /(1 + f) and

VF/(1+ f), we get only one critical curve

The same can be done on the 2-axis, yielding

D (1 +2\/}bcfe2)2

(67)
= (1 + 2bc\/?/$2 - 2/@2) (1 + 2bc\/1_%2 — 4bc\/ff-c§)
and
- 68
/{'2,1 - 2 (1 _ bc\/f) b ( a)
1 / 4
K22 = Z (1 +4/1+ m) (68b)

The two solutions indicate that the NIE will have two indepen-
dent critical curves. This is what we expect from the singular
case, since the removal of the singularity transforms the cut
to an ordinary caustic, yielding a second critical curve. To see
whether the caustics have fold or cusp catastrophes on the axes,
we map tangent vectors T of the critical curve to the source
plane via A - T, using Egs.(64). Due to the symmetry of the
problem, we have T' (0, 1) on the 1-axis and T' < (1,0) on
the 2-axis. A - T vanishes at the positions given by x; 1,7 = 1,2,
and is non-zero for the other cases. Since A - T is a necessary
condition for a cusp, the solutions k;2,% = 1,2, must corre-
spond to a fold. Excluding the case k;;1 = 1, = 1,2, which
can only occur on the 1-axis, we find that these caustic points
correspond to cusps.

If we consider a very small core, we can achieve better in-
sight into the shapes of the critical curves and the caustics using
the results from the singular case. We find limp, 0 k4,1 = 1/2,
meaning that these points tend to the critical curve of the SIS.
This means that the points given by &;,; are connected by one
critical curve, and due to k;; < K;2 (for small core radii),
this curve encloses the other one. Therefore we call it exterior
or first critical curve and the caustic first caustic. This caustic
must have four cusps on the axes due to the behaviour in the

0.5
none
04
03

0.2

0.1 )

f

Fig.9. The different topologies of the caustics in dependence of f
and b,

singular case and A - T = 0. It also corresponds to the tangential
critical curve in the limiting case of rotational symmetry. On the
other hand, we find limp, 0 k4,2 = 0o, meaning that this critical
curve contracts into the lens center, and showing that the caus-
tic transforms into the cut. We call these structures interior or
second critical curve and second caustic.

Now we increase the core radius. The first special case oc-
curs when k1,1 = k1,2 = 1. Because of Eqs.(66), this implies
be = f3/2 /2. Since the distortion matrix vanishes totally in this
case, the caustics now show a hyperbolic umbilic on the 1-axis
(for a discussion of these catastrophes see SEF, Sect. 6.3). Due
to the properties of a hyperbolic umbilic, the two cusps on the 1-
axis are passed to the other caustic, yielding two caustics with
two cusps each for b, > f3/2/2. In other words, the rdles of
k1,431 = 1,2 are interchanged. The point corresponding to £1,1
is now connected to K 2, since now k1,1 > Ki,2.

Since £ < x(0), Eq.(22b) implies k < /f/(2b.). For the
values k1,1 and &5, we obtain the condition b, < 32/ +f).
Therefore, the second critical curve and the second caustic exist
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1 1
038 £02
_06
041204
02} y 08
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0
0.1 02 03
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only if this condition is fulfilled. For the existence of the other
critical curve and caustic, we require b, < v/f/(1 + f).

We can find the complete critical curves and caustics without
numerical methods. The equation D = 0 is equivalent to

8csk> +4csk? +2c1k+¢co =0 , (69a)
with the coefficients

= (bc P2 f2) A? +8B2f2 (69b)
e = (—2bc P2 b+ f2) A2 —4R2F% (69¢)
1= 2b PPN — 2 (69d)
co:=f> . (69¢)

It is third order in & and linear in A2, If we insert A? = 1 for
the 1-axisand A2 = f2 for the 2-axis into Eqgs. (69), we re-obtain
the solutions for D = 0 on the axes given above. However, this
polynomial can not be factorized off the axes. But using x as
parameter, we can construct the shape of the critical curves and
the caustics without numerical methods, although we are now
faced with more complicated parameter ranges. These ranges
can be found from the solutions on the axes. Figs.6,7,8 show
the critical curves and the caustics in the case of an axis ratio
of 0.8, and for b, ranging between 0 and f3/2/2, 3/2/2 and
2/ + £), and f32/(1 + f) and /F/(1 + f), respectively.
Figure 9 relates the parameter space of the NIE to the different
possible topologies of the caustics.

Fig. 10. Cross sections for the NIE.
The plots on the left side show the
cross section of the second and the
first caustic, the ones on the right the
cross sections for multiple imaging
and for five images

0.8 1

Fig. 11. Cross sections of the NIE for a given core radius b; = 0.1. This
corresponds to a physical core radius of about 0.5 kpc

4.2.4. Cross sections

Figure 10 shows some cross sections of the NIE. On the left
side, we have plotted the cross sections of the second and the
first caustic, on the right side the cross sections for multiple
imaging and for five images; they were calculated numerically.

In Fig. 11 we show the behaviour of these cross sections for
b, = 0.1. This corresponds to a physical core radius of about
half a kiloparsec, if we take typical values for lensing situations
(24 = 0.5, z, = 2,v =~ 220km/s).

The cross sections for the second caustic and for multiple
imaging depend only weakly on the ellipticity of the NIE, but
strongly on the core radius, especially for very small b.. Hence,
the cut cross section of the SIE only yields a weak upper bound
for the probability of multiple imaging. The strong dependency
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of the second caustic on the core radius is easily understood,
since the corresponding critical curve falls into a region of the
lens plane which is strongly influenced by the core of the lens.
In the above case (b, = 0.1), the cross section for multiple
imaging is less than 30 percent of that in the singular case. For
larger ellipticity, a large fraction of this cross section is due to
the first, and not to the second caustic. This is clearly seen in
the upper row of Fig. 10, or for a special case in Fig. 11.

For the first caustic, the situation is reversed. The cross sec-
tion depends sensitively on the axis ratio, but is a weaker func-
tion of the core radius if one excludes the cases of very large
ellipticity and very large core radii. The argument is similar to
the one given above: the first critical curve falls outside the re-
gion strongly influenced by the core. If we again take b, = 0.1,
we see that the cross section of the first caustic is about 90 per-
cent of the caustic cross section of the SIE — except for very
small f. The fact that the cross section for five images is also
very sensitive to the core radius corresponds to the behaviour
of the second caustic, which influences this cross section espe-
cially in the case of large b, and small f.

5. Summary

We have presented a simple theory of lenses with ellipti-
cal mass distributions, following an ‘isothermal’ mass profile.
These mass distributions are natural generalizations of spherical
isothermal lenses often used in lens theory for modelling and
lensing statistics. The deflection angle for the singular isother-
mal ellipsoid can be obtained from the Poisson Eq. (7) without
employing the complex formalism. The explicit form for the de-
flection angle eliminates the need to perform an integral for the
deflection (e.g., Bourassa & Kantowski 1975), and its real rep-
resentation speeds up computations, due to the generally slow
complex arithmetics on computers. The lens equation can be
transformed into a one-dimensional form, making the inver-
sion of the lens equation particularly simple. For nonsingular
lenses, the deflection angle is somewhat more difficult, but can
be written in closed form. It is derived (in the Appendix) using
Wirtinger’s calculus.

For both kinds of lenses, the critical curves have been cal-
culated. They are quite trivial for the singular case, since they
correspond to k = 1/2, and slightly more complicated for the
non-singular case. Nevertheless, also for the latter case, a clas-
sification of the caustic topologies can be derived (see Fig. 9). In
addition, the area enclosed by the caustics has been calculated,
and from that, cross sections for multiple imaging in its various
image configurations have been derived.

In a forthcoming paper, we will apply our elliptical lens
models to the gravitational lens system B1422+231 (Patnaik et
al. 1992), which is likely to be due to a deflector with fairly
large ellipticity (for an alternative view, see Hogg & Blandford
1993).

Acknowledgements. We would like to thank Jiirgen Ehlers for helpful
criticism and remarks during the course of this work, and we are grateful

297

to the referee, Israel Kovner, for helpful discussions on the draft of this
manuscript and for many useful remarks on the final version.

Appendix A: complex representation of lens theory

If we are dealing with elliptical mass distributions, it is conve-
nient to use a complex representation of the lens theory. This
was investigated by Bourassa & Kantowski (1975) and Bray
(1984). In this appendix, we want to introduce the complex rep-
resentation as we will use it, and we summarize the results of
Bourassa & Kantowski in our notation.

If we write the vectors = and vy in the lens and the source
plane, respectively, and the deflection angle o as complex num-
bers,

X =z +ixp = xexp(ip) ,

y=u+tiy (A1)
a=q +iag

we find as lens equation

y=x—a(x) (A2)

The complex conjugate of the deflection angle a(x) is — as in the
real case — given by an integration in the lens plane, namely

a*(x) = % / —K(xl) d*s’

cXx—x

(A3)

We use Wirtinger’s differential calculus here®. The operators

0 1/0 .0
5; = 5 (8—531 - 18_152) s (A4G,)
0 1/0 .0

make it possible to apply the ordinary rules of partial differ-
entiation to the (independent) complex variables x and x*. A
complex function is analytic for those values of x where the
partial derivative with respect to x* is vanishing. If we rewrite
the deflection potential 1)(x) in complex variables 1(x), namely

PY(x) = ! / k(x)n|x —x'|d*z’ (A5)
T Je

3 To be mathematically rigorous we should construct the

analytic continuation of a real-analytic function f : R? —
R (or €©) , (z1,13) — f(z1,x2) into a complex-analytic
function f : €2 — R (or C) by defining

f&x,%) = f(

X+X x—X
2 7 2
Wirtinger’s differential operators are then taken to be the partial

derivatives of f with respect to x and X, followed by the restric-
tion X = x*. For simplicity, we write f(x) instead of f(x,X).
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we get the complex deflection angle from the equation

2" =22 (46)
Ox
Poisson’s equation corresponds to
0%y  Oa*
ox Ox* ~ Ox* 47

Therefore a* is analytic if, and only if, x vanishes. Fermat’s
potential is given by

1
o, y) =5 (x =y - Y — ¥(x) (A3)

The lens equation can therefore be written as gradient mapping,

0%
ax*

We also define a complex shear, I' := v; + i72, which can be
shown to be

oa*\"
L) = ( ox )
If we write the absolute value of the shear as v, we get the
usual expression for the magnification, 4 = 1/D with D :=
(1 — k)*> — ¥2. In Sect.4, we used the mapping of a vector T'
from the lens to the source plane. In the real representation, this
is done by the linear mapping A - T'. It is easy to check that this
corresponds to the complex expression (1 — x)T — I'™*T*.

We introduce now non-orthogonal, elliptical coordinates b
and 8 by x =: bcos @ +1(b/ f) sin 6 for the description of ellipti-
cal lens models. Due to b% = 22 + f2z2 = f'2(x> +x*2)/4+ (1 +
fHxx*/2, b is the minor axis (for f < 1) of an iso-density el-
lipse and corresponds to Eq.(21d). If we rewrite Eq.(A3) in these
new coordinates, the angular integral can be done (Bourassa &
Kantowski 1975), leading to

b(x) b k( b’) ,
o s rmE

where / f2x2 + f'2b’2 is defined as the continous continuation
of v/ f2x% = fx with respect to b’.

Bourassa & Kantowski have also shown that the deflection
angle is determined solely by the mass within the iso-density
ellipse given by this position. These equations have been used
in this work for the calculation of the NIE and for the complex
description of the SIE.

(49)

(A10)

a*(x) = 2 (A11)

Appendix B: isothermal lens models in complex representa-
tion

In this appendix we give some details of the calculations in
complex representation for the singular as well as for the non-
singular case.

R. Kormann et al.: Isothermal elliptical gravitational lens models

The singular case
Inserting the surface mass density of the SIE, Eq.(21b), into
Eq.(A11), we find for the deflection angle of this model

i f'b

a*(x) = —Farsinh—f; (B1)
Using the relation o +i7 = arsinh(s+it), where s := sinh o cos 7
and t = coshosinT, we have checked the equivalence of
Eqgs.(27a) and (B1).

For the SIE in complex representation we find

ﬁ_aa* _VI 1 on? (B2)
Tox* T 2b . [fax2y prapr Ox*

This leads to a very useful relation, namely (bz),m* =2+ 22, =

v/ 2x% + f'2b2. In this equation we used the index separated by
a comma to denote Wirtinger’s differentiation. With the help of
this equation we can simplify the expression for the shear of the
SIE,

da* VI o202 —x(0?) » x*

F= 5 = x - x - BY

For the last equality we used 2b> — x(b%) ; = x*(b?) 4+, which
can be checked by calculating the two components separately.
Of course, the complex shear is identical to the real one due
toT = —kx/x* = —k exp(2ip) = —k[cos(2p) + isin(2p)] =
M +i72.

The non-singular case

If we integrate Eq.(A11) with Eq.(22b) inserted, we obtain the
result:

a*(x) = % {arsinh (E, /b2 + b%) — arsinh (2 bc)] (Bda)

/ 0] 3 '
- —f*/z [artanhf(—— w - artanhff—l;(c-] (B4b)
In Eq.(B4a), we have used

fl

For b, = 0, we get E(x) = f'/(fx), and we end up with the
complex deflection angle of the SIE. It is possible, although
very cumbersome, to split the complex deflection angle of the
SIE into the real and the imaginary part, using the relations
artanh z = (1/2)In[(1 +z)/(1 — z)] and Inz = In |z| + iarg z.
The results are given in Eqs.(62).

The complex shear, as it is defined in App.A, is given by the
equations

vy 0"
BN (B5a)
2 3/2 a
L B f <bc P b%)
e (t).o-
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_ V¥
- f2x2 _ fIZb%

K 1+ f2
X [\/_7(b2),z(b2),:c* - T b2 + bg + fbc]

In Eqs.(63), we have decomposed this result into vy, and ;.

(B5b)
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