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i.e. a source at y = 1 has two images at
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p
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, (3.14)

and their magnifications are
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For general source positions,
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Note that lim

y!1 µ� = 0 and that lim

y!1 µ
+

= 1: even if the lens equation has
always two solutions, for large angular separations between the source and the lens, one
image desappears because it is demagnified. The other is completely undistiguishable
from the source because it has the same flux and the same position.

The total magnification of a point source by a point mass is thus
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, (3.17)

and the magnification ratio of the two images is
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If � = ✓
E

, y = 1 and the total magnification is µ = 1.17 + 0.17 = 1.34. In terms
of magnitudes, this correspond to �m = �2.5 logµ ⇠ 0.3. The image forming at x

+

contributes for ⇠ 87% of the total magnification.

Lensing by point masses on point sources will be discussed in detail in a following
chapter. However, we can already answer to the question: how can lensing by a point
mass be detected? Unless the lens is more massive than 10

6 M� (for a source at
cosmological distance), the angular separation between multiple images is too small to
be resolved. However, the magnification e↵ect will be detectable in many cases if the
source is moving relative to the lens (for example, a star in the large magellanic cloud
is in relative motion with respect to a star in the halo of our galaxy). Thus, since the
magnification changes as a function of the angular separation between source and lens,
the lensing e↵ect will induce a time variability in the light curve of the source.

3.2 Axially symmetric lenses

The main advantage of using axially symmetric lenses is that their surface density
is independent on the position angle with respect to lens center. If we choose the
optical axis such that it intercepts the lens plane in the lens center, this implies that
⌃(

~⇠) = ⌃(|~⇠|). The lensing equations therefore reduce to a one-dimensional form, since
all the light rays from a (point) source lie on the same plane passing through the center
of the lens, the source and the observer.
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The deflection angle for an axially symmetric lens was found to be
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. (3.19)

If want to use adimensional quantities:
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where we have introduced the dimensionless mass m(x). Note that
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The lens equation (2.9) then becomes

y = x� m(x)

x
. (3.22)

Now, we derive formulas for several lensing quantities. To do that, we need to write the
deflection angle as a vector. For an axially symmetric lens, the deflection angle points
towards the lens center. Then,
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where ~x = (x
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By di↵erentiating we obtain:
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which immediately give the elements of the Jacobian matrix:
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This permits us to obtain the following expressions for the convergence and the shear
components:
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From these relations,
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Since m(x) = 2
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where (x) = m(x)/x2 is the mean surface mass density within x. Eq. 3.31 then
reduces to

�(x) = (x)� (x) (3.33)

The Jacobian determinant of the lens mapping is
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Critical lines and caustics: Since the critical lines arise where detA = 0, Eq. (3.34)
implies that axially symmetric lenses with monotonically increasing m(x) have at most
two critical lines, where m(x)/x2

= 1 and d(m(x)/x)/dx = dy/dx = 1. Both these
conditions define circles on the lens plane (see Fig. 3.1). The critical line along which
m(x)/x2

= 1 is the tangential one: any vector which is tangential to this line is an
eigenvector with zero eigenvalue of the Jacobian matrix. On the other hand, given
that any vector perpendicular to the critical line where d(m(x)/x)/dx = 1 is also an
eigenvector with zero eigenvalue, this line is the radial critical line. This can be seen as
follows. Consider a point (x, 0) on a critical line. Although this point has been chosen
to lay on the x

1

-axis, this discussion can be generalized to any other critical point, since
the reference frame can be arbitrarily chosen. The Jacobian at (x, 0) is readily derived
from Eq. 3.27:
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Let consider a vector whose components are (0, a) at (x, 0). This vector is clearly
tangential to the critical line at (x, 0). Through the lens mapping, it is mapped onto
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Clearly the last term in Eq. 3.35 returns the null vector when applied to (0, a). If (x, 0)
lays on the tangential critical line, then (1�m(x)/x2

) = 0 and
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Thus (0, a) is an eigenvector of A with 0 eigenvalue.
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Figure 3.1: Imaging of a point source by a non-singular, circularly-symmetric lens. Left:
image positions and critical lines; right: source position and corresponding caustics.
From Narayan & Bartelmann (1995).

Consider now a vector (b, 0), normal to the critical line at (x, 0). Mapping it to the
source plane we obtain:

✓
y
1

y
2

◆
= A(x, 0)

✓
b
0

◆
=

✓
1 +

m(x)

x2

� 1

x

dm(x)

dx

◆✓
b
0

◆
. (3.38)

If (x, 0) lays on the radial critical line, then [1 +m(x)/x2 �m0
(x)/x] = 0, thus (b, 0)

is an eigenvector of A is 0 eigenvalue.

From the lens equation it can be easily seen that all the points along the tangential
critical line are mapped on the point y = 0 on the source plane. Indeed:

y = x
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1� m

x2

⌘
= 0 . (3.39)

if x indicates a tangential critical point. Therefore, axially symmetric models have
point tangential caustics. On the other hand, the points along the radial critical line
are mapped onto a circular caustic on the source plane.

Image distortions near the critical lines: Let us consider now how the images are
distorted near the critical lines. Consider a point (x

c

, 0) very close to the tangential
critical line. At this point,

m(x)

x2

= 1� � , (3.40)

where � ⌧ 1.
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Using Eq. 3.35, we see that near the tangential critical line the Jacobian is approximated
by
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In the first element of the matrix we have neglected �, being it small. Consider an
ellipse around ~x
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Through the lens mapping, the source of this ellipse is
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Suppose that ~d(�) is a circle, i.e. ⇢
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Thus, the ellipse is strongly elongated along the x
2

direction.

On the contrary, suppose that (x
c

, 0) is very close to the radial critical line. In this case,
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with � ⌧ 1. The Jacobian matrix at (x
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, 0) is then
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The source corresponding to the ellipse in Eq. 3.42 is
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Thus, if ~d(�) is a circle,
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and the ellipse is now strongly elongated along the x
1

direction.

Summarizing, any image near the tangential critical curve is strongly distorted tangen-
tially to the critical curve, while any image near the radial critical curve is strongly
distorted normally to the critical curve. The discussion done here is still neglecting high
order lensing e↵ects. In the real world, images near the critical lines are not ellipses.
Rather they are bent to form complex shapes, like arcs, etc. Such distortions are more
evident if the sources are extended. Fig. 3.2 shows the images of two extended sources
lensed by the same model as in Fig. 3.1. One source is located close to the point-like
caustic in the center of the lens. It is imaged onto the two long, tangentially oriented
arcs close to the outer critical curve and the very faint image at the lens center. The
other source is located on the outer caustic and forms a radially elongated image which
is composed of two merging images, and a third tangentially oriented image outside the
outer critical line.
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Figure 3.2: Imaging of an extended source by a non-singular circularly-symmetric lens.
A source close to the point caustic at the lens center produces two tangentially oriented
arc-like images close to the outer critical curve, and a faint image at the lens center.
A source on the outer caustic produces a radially elongated image on the inner critical
curve, and a tangentially oriented image outside the outer critical curve. From Narayan
& Bartelmann (1995).

Tangential and radial magnification of the images: As was pointed out in the
previous chapter, the eigenvalues of the Jacobian matrix give the inverse magnification of
the image along the tangential and radial directions. Fig. (3.3) illustrates an infinitesimal
source of diameter � at position y and its image, which is an ellipse, whose minor and
major axes are ⇢

1

and ⇢
2

respectively, at position x. With respect to the origin of the
reference frame on the source plane, the circular source subtends an angle � = �/y.
Due to the axial symmetry of the lens, � = ⇢

2

/x. Using the lens equation, we thus
obtain
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The lens mapping gives � = ⇢
1

(dy/dx), from which
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This means that the image is stretched in the tangential direction by a factor [1 �
m(x)/x2

]

�1 and in the radial direction by [1 +m(x)/x2 � 2(x)]�1.

Generalities about the images: As discussed previously, if the lens is strong, multiple
images can be formed of the same source. The number of these images depends on the
position of the source with respect to the caustics. Sources which lie within the radial


