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Figure 3.2: Imaging of an extended source by a non-singular circularly-symmetric lens.
A source close to the point caustic at the lens center produces two tangentially oriented
arc-like images close to the outer critical curve, and a faint image at the lens center.
A source on the outer caustic produces a radially elongated image on the inner critical
curve, and a tangentially oriented image outside the outer critical curve. From Narayan
& Bartelmann (1995).

Tangential and radial magnification of the images: As was pointed out in the
previous chapter, the eigenvalues of the Jacobian matrix give the inverse magnification of
the image along the tangential and radial directions. Fig. (3.3) illustrates an infinitesimal
source of diameter � at position y and its image, which is an ellipse, whose minor and
major axes are ⇢

1

and ⇢
2

respectively, at position x. With respect to the origin of the
reference frame on the source plane, the circular source subtends an angle � = �/y.
Due to the axial symmetry of the lens, � = ⇢

2

/x. Using the lens equation, we thus
obtain

�

⇢
2

= 1� m(x)

x2

. (3.49)

The lens mapping gives � = ⇢
1

(dy/dx), from which

�

⇢
1

= 1 +

m(x)

x2

� 2(x) (3.50)

This means that the image is stretched in the tangential direction by a factor [1 �
m(x)/x2

]

�1 and in the radial direction by [1 +m(x)/x2 � 2(x)]�1.

Generalities about the images: As discussed previously, if the lens is strong, multiple
images can be formed of the same source. The number of these images depends on the
position of the source with respect to the caustics. Sources which lie within the radial
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Figure 3.3: Sketch of the mapping of an infinitesimal circular source onto an elliptical
image (Figure from Schneider et al., 1992).

caustic produce three images. Sources outside the radial caustic have only one image.
This is shown in Fig. 3.1. Since the tangential critical curve does not lead to a caustic
curve, but the corresponding caustic degenerates to a single point ~y = 0, the tangential
critical curves have no influence on the image multiplicity. Thus, pairs of images can
only be created or destroyed if the radial critical curve exists.

For non-singular axially symmetric lenses, whose surface density is piecewise continuous
and falls o↵ at large radii, such that it is bound, i.e.

0  (x)  
max

(3.51)

and

lim

x!1
x(x) = 0 . (3.52)

it can be shown that the following properties hold (Schneider et al., 1992):

(1) if the source is at y > 0, any image with x > 0 is at x � y. This is easily seen
from the lens equation:

x = y +
m(x)

x
. (3.53)

Being m(x) � 0 and x � 0, it follows that x � y;

(2) for su�ciently large y, there exists a single image. From Eq. 3.52, we see that
there must be a constant c and a value a such that for |x| > a (x) < c/|x|.
This bounds the mass:

m(x) = 2

Z
x

0

x0(x0
)dx0

= m(a) + 2

Z |x|

a

x0(x0
)dx0 < m(a) + 2c(|x|� a) . (3.54)
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Thus,

����
m(x)

x

���� < b . (3.55)

If y is su�ciently large, y � b, the lens equation tells us that

x = y +
m(x)

x
> 0 , (3.56)

thus x � y. Moreover, if x > a then

 =

m(x)

x2

=

m(x)

x

1

x
<

b

x
. (3.57)

Thus,

lim

x!1
y = lim

x!1
(1� )x = x . (3.58)

(3) a lens can produce multiple images if and only if at least at one point 1�2(x)+
(x) < 0: if 1 � 2(x) + (x) > 0 throughout, a lens produces no multiple
images, since y(x) increases monotonically. If on the other hand, there is a point
where dy/dx < 0, there is at least one local maximum x

1

and one local minimum
x
2

> x
1

of the curve y(x) since dy/dx ! 1 for |x| ! 1. For values of y such
that y(x

2

) < y < y(x
1

), there are at least three images;

(4) a necessary condition for multiple images is that  > 1/2 at one point in the lens:
if dy/dx < 0 at one point, then  > (1 + )/2 � 1/2; a su�cient condition for
multiple imaging is that  > 1 at one point. Indeed: if  have a a maximum at
one point x

m

where (x
m

) > 1, then (x
m

)  (x
m

) and dy/dx < 0 at x
m

.
The statement then follows from (3);

(5) if the surface density does not increase with x, 0
(x)  0, (0) > 1: from (4)

we know that it is su�cient that  > 1 at one point for having multiple images.
On the other hand if (0)  1, then, since y = x(1 � ), we have for x � 0:
dy/dx = (1� )� x0. Since

(x) = 2

Z
1

0

duu(ux) , (3.59)

then

d

dx
= 2

Z
1

0

duu20
(ux)  0 (3.60)

and (x)  (0)  1, we see that dy/dx � 0, so that no multiple images can
occur.

Images are in odd numbers. A special case is that of singular lenses, i.e. lenses with
infinite density at the center: in this case only two images arise when the source is within
the radial caustic. This is clear from the discussion in Sect. (2.6): when the singularity
is present, the central maximum of the time delay surface is suppressed. Therefore one
possible image is missed.
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3.2.1 Singular Isothermal Sphere

One of the most widely used axially symmetric model is the Singular Isothermal Sphere
(SIS hereafter). The density profile of this model can be derived assuming that the
matter content of the lens behaves as an ideal gas confined by a spherically symmetric
gravitational potential. This gas is taken to be in thermal and hydrostatic equilibrium.
One of the two density profiles satisfying these sets of equations is given by

⇢(r) =
�2

v

2⇡Gr2
, (3.61)

where �
v

is the velocity dispersion of the “gas” particles and r is the distance from the
sphere center. By projecting the three-dimensional density along the line of sight, we
obtain the corresponding surface density

⌃(⇠) = 2

�2

v

2⇡G

Z 1

0

dz

⇠2 + z2

=

�2

v

⇡G

1

⇠


arctan

z

⇠

�1

0

=

�2

v

2G⇠
. (3.62)

This density profile has a singularity at ⇠ = 0, where the density is ideally infinite.
Nevertheless, it has been used to describe the matter distribution in galaxies, expecially
because it can reproduce the flat rotation curves of spiral galaxies.

By choosing

⇠
0

= 4⇡
⇣�

v

c

⌘
2 D

L

D
LS

D
S

(3.63)

as the length scale on the lens plane, we obtain:

⌃(x) =
�2

v

2G⇠

⇠
0

⇠
0

=

1

2x

c2

4⇡G

D
S

D
L

D
LS

=

1

2x
⌃

cr

. (3.64)

Thus, the convergence for the singular isothermal profile is

(x) =
1

2x
, (3.65)

and the lensing potential (2.22) is

 (x) = |x| . (3.66)

Using Eqs. (2.23), we obtain

↵(x) =
x

|x| , (3.67)

and the lens equation reads

y = x� x

|x| . (3.68)

If y < 1, two solutions of the lens equation exist. They arise at x = y�1 and x = y+1,
on opposite sides of the lens center. The corresponding angular positions of the images
are

✓± = � ± ✓
E

(3.69)
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where ✓
E

is the Einstein radius, defined now as

✓
E

=

s
4GM(✓

E

)

c2
D

LS

D
L

D
S

. (3.70)

The quantity M(✓
E

) is the mass within the Einstein radius. The angular separation
between the two images therefore is �(✓) = 2✓

E

: the Einstein radius defines a typical
scale for separation between multiple images.

On the other hand, if y > 1, Eq. (3.68) has a unique solution, x = y + 1. Images
arising at x > 0 are of type I (positive parity), while those arising at x < 0 are of type
II (negative parity).

The shear follows from the derivatives of  . Since

@ 

@x
i

=

x
i

|x| (3.71)

we have
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@x
i

@x
j

=

�
ij

x� x
i

x
j

/x

x2
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�
ij

x2 � x
i

x
j

x3

, (3.72)

and thus
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(3.73)
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The shear components are

�
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=

1

2

( 

11

� 
22

) =

1

2
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2
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1
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2
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x
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x
, (3.76)

�
2

=  

12

= �cos� sin�

x
= �1

2

sin 2�

x
. (3.77)

Thus,

�(x) = (�2

1

+ �2

2

)

1/2

=

1

2x
= (x) . (3.78)

From Eq. (3.68), the magnification as a function of the image position is given by

µ =

|x|
|x|� 1

. (3.79)

Images are only magnified in the tangential direction, since the radial eigenvalue of the
Jacobian matrix is unity everywhere.

If y < 1, the magnifications of the two images are

µ
+

=

y + 1

y
= 1 +

1

y
; µ� =

|y � 1|
|y � 1|� 1

=

�y + 1

�y
= 1� 1

y
, (3.80)

from which we see that for y ! 1, the second image becomes weaker and weaker until it
disappears at y = 1. On the other hand, for y ! 1, the source magnification obviously
tends to unity: sources which are at large distance from the lens can only be weakly
magnified by gravitational lensing.


