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General concepts

2.1 The general lens

The deflection angle in Eq. 1.41 depends linearly on the mass M . This results was
obtained by linearizing the equations of general relativity in the weak field limit. Under
these circumstances, the superposition principle holds and t the deflection angle of an
array of lenses can be calculated as the sum of all contributions by each single lens.
Suppose we have a sparse distribution of N point masses on a plane, whose positions
and masses are ~⇠

i

and M
i

, 1  i  N . The deflection angle of a light ray crossing the
plane at ~⇠ will be:
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We now consider more realistic lens models, i.e. three dimensional distributions of
matter. Even in the case of lensing by galaxy clusters, the physical size of the lens
is generally much smaller than the distances between observer, lens and source. The
deflection therefore arises along a very short section of the light path. This justifies the
usage of the thin screen approximation (see Fig. (2.1)): the lens is approximated by a
planar distribution of matter, the lens plane. Even the sources are assumed to lie on a
plane, called the source plane.

Within this approximation, the lensing matter distribution is fully described by its surface
density,

⌃(

~⇠) =

Z
⇢(~⇠, z) dz , (2.2)

where ~⇠ is a two-dimensional vector on the lens plane and ⇢ is the three-dimensional
density.

As long as the thin screen approximation holds, the total deflection angle is obtained
by summing the contribution of all the mass elements ⌃(~⇠)d2⇠:
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2.2 Lens equation

In Fig. (2.1) we sketch a typical gravitational lens system. A mass concentration is
placed at redshift zL, corresponding to an angular diameter distance DL. This lens
deflects the light rays coming from a source at redshift zS (or angular distance DS).
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Figure 2.1: Sketch of a typical gravitational lensing system (Figure from Bartelmann
& Schneider, 2001).

Remark:
It is not guaranteed that the relation between physical size, distance and angular size
can be written as [physical size] = [angular size] · [distance] if space is curved. It is
however possible to define distances in curved spacetime such that this relation from
Euclidean space holds. Note, however, that due to cosmic expansion, distances are
not additive, such that DL +DLS 6= DS.

We first define an optical axis, indicated by the dashed line, perpendicular to the lens
and source planes and passing through the observer. Then we measure the angular
positions on the lens and on the source planes with respect to this reference direction.

Consider a source at the angular position ~�, which lies on the source plane at a distance
~⌘ =

~�DS from the optical axis. The deflection angle ~̂↵ of the light ray coming from
that source and having an impact parameter ~⇠ =

~✓DL on the lens plane is given by
Eq. (1.36). Due to the deflection, the observer receives the light coming from the source
as if it was emitted at the angular position ~✓.

If ~✓, ~� and ˆ~↵ are small, the true position of the source and its observed position on the
sky are related by a very simple relation, obtained by a geometrical construction. This
relation is called the lens equation and is written as

~✓DS =

~�DS +
ˆ~↵DLS , (2.4)

where DLS is the angular diameter distance between lens and source.

Defining the reduced deflection angle

~↵(~✓) ⌘ DLS

DS

ˆ~↵(~✓) , (2.5)

from Eq. (2.4), we obtain

~� =

~✓ � ~↵(~✓) . (2.6)
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This equation, called lens equation is apparently very simple. All the interesting physics
of lensing arises because ~↵ depends on ~✓.

It is very common and useful to write Eq. (2.4) in dimensionless form. This can be
done by defining a length scale ⇠

0

on the lens plane and a corresponding length scale
⌘
0

= ⇠
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DS/DL on the source plane. Then we define the dimensionless vectors
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as well as the scaled deflection angle
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Carrying out some substitutions, Eq. (2.4) can finally be written as

~y = ~x� ~↵(~x) . (2.9)

Special case: axially symmetric lenses

In general, the deflection angle is a two-dimensional vector. In the case of axially
symmetric lenses we may compute it only in one dimension, since all light rays from
the source to the observer must lie in the plane spanned by the center of the lens, the
source and the observer. This can be seen explicitely as follows.

We start from Eq. 2.3. Let take the lens
center as the origin of the reference frame.
By symmetry, we can choose the refer-
ence frame such that ~⇠ = (⇠, 0), ⇠ �
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Then,
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For a symmetric mass distribution ⌃(~⇠) = ⌃(|~⇠|). The components of the deflection
angle are thus
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By symmetry, the second component of the deflection angle is zero, therefore ˆ~↵ is
parallel to ~⇠. Thus, using the lens equation, we find that also the vector ~⌘ must be
parallel to ~⇠.
For the first component of the deflection angle in Eq. 2.12, the inner integral vanishes
for ⇠0 > ⇠, while it is 2⇡/⇠ if ⇠0 < ⇠. Then, the deflection angle for an axially
symmetric lens is
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The formula is similar to that derived for a point mass. The deflection is determined
by the mass enclosed by the circle of radius ⇠, M(⇠).
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2.3 Lensing potential

An extended distribution of matter is characterized by its e↵ective lensing potential,
obtained by projecting the three-dimensional Newtonian potential on the lens plane and
by properly rescaling it:
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The dimensionless counterpart of this function is given by
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This lensing potential satisfies two important properties:

(1) the gradient of  gives the scaled deflection angle:
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(2) the Laplacian of  gives twice the convergence:

4
x

 (~x) = 2(~x) . (2.20)

This is defined as a dimensionless surface density
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where ⌃cr is called the critical surface density, a quantity which characterizes the
lens system and which is a function of the angular diameter distances of lens and
source.

Eq. 2.20 is derived from the Poisson equation,

4� = 4⇡G⇢ . (2.22)

The surface mass density is
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Let us now introduce a two-dimensional Laplacian
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which gives
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Inserting Eq. 2.26 into Eq. 2.24, we obtain
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If the lens is gravitationally bound, @�/@z = 0 at its boundaries and the second
term on the right hand side vanishes. From Eqs. 2.14 and 2.15, we find
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using adimensional quantities Eq. 2.28 reads
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Integrating Eq. (2.20), the e↵ective lensing potential can be written in terms of the
convergence as

 (~x) =
1

⇡

Z

R2

(~x0
) ln |~x� ~x0|d2x0 , (2.31)

from which we obtain that the scaled deflection angle is
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2.4 Magnification and distortion

One of the main features of gravitational lensing is the distortion which it introduces
into the shape of the sources. This is particularly evident when the source has no
negligible apparent size. For example, background galaxies can appear as very long arcs
in galaxy clusters.

The distortion arises because light bundles are deflected di↵erentially. Ideally the shape
of the images can be determined by solving the lens equation for all the points within
the extended source. In particular, if the source is much smaller than the angular size
on which the physical properties of the lens change, the relation between source and


