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2.3 Lensing potential

An extended distribution of matter is characterized by its e↵ective lensing potential,
obtained by projecting the three-dimensional Newtonian potential on the lens plane and
by properly rescaling it:
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DLDS

2
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�(DL

~✓, z)dz . (2.14)

This lensing potential satisfies two important properties:

(1) the gradient of ˆ

 gives the reduced deflection angle:
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Note that, using the adimensional notation,
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We can see that
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By multiplying both sides of this equation by D2
L/⇠

2
0 , we obtain
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This allows us to introduce the dimensionless counterpart of ˆ
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Substituting Eq. 2.22 into Eq 2.21, we see that

~r
x

 (~x) = ~↵(~x) . (2.23)

(2) the Laplacian of ˆ

 gives twice the convergence:
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This is defined as a dimensionless surface density
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where ⌃cr is called the critical surface density, a quantity which characterizes the
lens system and which is a function of the angular diameter distances of lens and
source.

Eq. 2.24 is derived from the Poisson equation,

4� = 4⇡G⇢ . (2.26)

The surface mass density is
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Let us now introduce a two-dimensional Laplacian
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which gives
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Inserting Eq. 2.30 into Eq. 2.28, we obtain
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If the lens is gravitationally bound, @�/@z = 0 at its boundaries and the second
term on the right hand side vanishes. From Eqs. 2.14 and 2.22, we find
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using adimensional quantities Eq. 2.32 reads
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Integrating Eq. (2.24), the e↵ective lensing potential can be written in terms of the
convergence as
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from which we obtain that the scaled deflection angle is
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Figure 2.2: Distortion e↵ects due to convergence and shear on a circular source (Figure
from Narayan & Bartelmann, 1995).

2.4 Magnification and distortion

One of the main features of gravitational lensing is the distortion which it introduces
into the shape of the sources. This is particularly evident when the source has no
negligible apparent size. For example, background galaxies can appear as very long arcs
in galaxy clusters.

The distortion arises because light bundles are deflected di↵erentially. Ideally the shape
of the images can be determined by solving the lens equation for all the points within
the extended source. In particular, if the source is much smaller than the angular size
on which the physical properties of the lens change, the relation between source and
image positions can locally be linearized. In other words, the distortion of images can
be described by the Jacobian matrix
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, (2.37)

where x
i

indicates the i-component of ~x on the lens plane. Eq. (2.37) shows that
the elements of the Jacobian matrix can be written as combinations of the second
derivatives of the lensing potential.

For brevity, we will use the shorthand notation

@2
 (~x)
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⌘  
ij

. (2.38)
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We can now split o↵ an isotropic part from the Jacobian:
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This is manifestly an antisymmetric, trace-free matrix is called the shear matrix. It
quantifies the projection of the gravitational tidal field (the gradient of the gravitational
force), which describes distortions of background sources.

This allows us to define the pseudo-vector ~� = (�1, �2) on the lens plane, whose
components are

�1(~x) =

1

2

( 11 � 22) (2.42)

�2(~x) =  12 =  21 , (2.43)

This is called the shear.

The eigenvalues of the shear matrix are

±
q
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2 = ±� . (2.44)

Thus, there exists a coordinate rotation by an angle � such that
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Remark:
Note the factor 2 on the angle �, which reminds that the shear component are elements
of a 2⇥ 2 tensor and not a vector.

The remainder of the Jacobian is
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Thus, the Jacobian matrix becomes
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The last equation explains the meaning of both convergence and shear. The trans-
formation induced by the convergence is isotropic, i.e. the images are only rescaled
by a constant factor in all directions. On the other hand, the shear stretches the in-
trinsic shape of the source along one privileged direction.The Jacobian matrix has two
eigenvalues,

�
t

= 1� � � (2.49)

�
r

= 1� + � . (2.50)
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Let consider the reference frame where the Jacobian is diagonal. Then,

A =

✓
1� � � 0

0 1� + �

◆
. (2.51)

Consider a circular source, whose isophotes have equation y21 + y22 = r2. The lens
equation implies that the points on the source plane satisfying this equation are mapped
onto the points (x1, x2), such that
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Thus

y1 = (1� � �)x1 (2.53)

y2 = (1� + �)x2 . (2.54)

Summing in quadrature, we obtain

r2 = y21 + y22 = (1� � �)2x2
1 + (1� + �)2x2

2 , (2.55)

which is the equation of an ellipse on the lens plane. Thus, a circular source, which is
small enough compared to the scale of the lens, like that shown in Fig. (2.2) is mapped
into an ellipse when  and � are both non-zero. The semi-major and -minor axes are

a =

r

1� � �
, b =

r

1� + �
. (2.56)

Obviously, the ellipse reduces to a circle if � = 0.

An important consequence of the lensing distortion is the magnification. Through the
lens equation, the solid angle element ��2 (or equivalently the surface element �y2) is
mapped into the solid angle �✓2 (or in the surface element �x2). Since the Liouville
theorem and the absence of emission and absorbtion of photons in gravitational light
deflection ensure the conservation of the source surface brightness, the change of the
solid angle under which the source is seen implies that the flux received from a source
is magnified (or demagnified).

Given Eq. (2.37), the magnification is quantified by the inverse of the determinant of
the Jacobian matrix. For this reason, the matrix M = A�1 is called the magnification
tensor. We therefore define
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1
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. (2.57)

The eigenvalues of the magnification tensor (or the inverse of the eigenvalues of the
Jacobian matrix) measure the amplification in the tangential and in the radial direction
and are given by
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The magnification is ideally infinite where �t = 0 and where �r = 0. These two
conditions define two curves in the lens plane, called the tangential and the radial
critical line, respectively. An image forming along the tangential critical line is strongly
distorted tangentially to this line. On the other hand, an image forming close to the
radial critical line is stretched in the direction perpendicular to the line itself.


