
2

General concepts 27

Example: Numerically simulated galaxy cluster

Galaxy clusters are the most massive bound objects in the
Universe. They are “young” structures, whose assembling
process is still on-going. For this reason they are character-
ized by an high level of complexity. The luminous matter
within them (gas and stars) accounts for ⇠ 10% of their
mass. The rest is dark matter. Numerical simulations pro-
vide the most realistic description of these cosmic struc-
tures. N-body and hydrodynamical simulations have been
used to simulate the formation and the evolution of sys-
tems on di↵erent scales. The figure on the left side shows
the adimensional surface mass density (or convergence) of
a cluster-sized dark matter halo simulated at z ⇠ 0.3. The
mass of such object is ⇠ 10

15M�.

Imagine that a bundle of light rays passes through the mass
distribution showed above. Each mass element of the lens
contributes to deflect the light coming from background
sources. Eq.2.3 allows to calculate the deflection angle at
each position ~⇠ on the lens plane. The resulting deflection
angle field is shown on the right.

The lensing e↵ect can be decomposed into two terms: the
isotropic term given by the convergence and the anisotropic
term given by the shear �. This is a pseudo-vector, whose
orientation define the direction into which an image is
stretched. All around the cluster, the shear tends to be tan-
gential to the lens iso-density contours (see the left panel
below). Close to the cluster cores, images can be distorted
also towards the cluster center. The intensity of � deter-
mines the amplitude of the distortion. The shear pattern for
our numerical cluster is shown on the left.

By distorting them, the lens magnifies the sources. De-
pending on where the sources are located behind the clus-
ter, the resulting magnification is di↵erent. In the Figure
on the right shown is the magnification on the lens plane
(in logarithmic scale!). It is ideally infinite along the so-
called lens critical lines. The sources generating images
around the critical lines are located along the caustics.
The critical lines and the caustics are shown in the middle
and in the right panels below, respectively.
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2.5 Lensing to the second order

In section 2.4, we discussed the e↵ects of lensing at the first order. We briefly mention
now some second order e↵ects. Using a Taylor expansion around the origin, the second
order lens equation can be written as
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The lensing e↵ect is described at the first order by the Jacobian matrix A. Now, we
introduce the tensor
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Then, Eq. 2.60 reads
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By simple algebra, it can be shown that
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Thus, the second order lensing e↵ect can be expressed in terms of the derivatives of the
shear (or in terms of the third derivatives of the potential).

2.5.1 Complex notation

It is quite useful to use complex notation to map vectors or pseudo-vectors on the
complex plane. Indeed, in this case we can also use complex di↵erential operators to
write down some relations between the lensing quantities in a very concise way.

In complex notation, any vector v = (v1, v2) is written as

v = v1 + iv2 ; . (2.65)

Similarly we can define the complex deflection angle ↵ = ↵1 + i↵2 and the complex
shear � = �1 + i�2.

It is also possible to define some complex di↵erential operators, namely

@ = @1 + i@2 (2.66)

and

@†
= @1 � i@2 . (2.67)

Using this formalism, we can easily see that

@ ˆ = @1 ˆ + i@2 ˆ = ↵1 + i↵2 = ↵ . (2.68)


