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Moreover

@†@ = @2
1 + @2

2 = 4 . (2.69)

Thus,

@†@ ˆ = 4ˆ

 = 2 . (2.70)

Note that while ˆ

 is a spin-0 scalar field, the application of the @ operator generate the
deflection angle, i.e. a spin-1 vector field. On the contrary, the @† operator applied to
the deflection field lower it to another spin-0 scalar field (the convergence). Therefore,
the @ and @† operators can be considered as spin raising and lowering operators.

By applying twice the raising operator, we obtain

1

2

@@ ˆ =

1

2

@↵ = � : (2.71)

the shear field is indeed a spin-2 tensor field, which is invariant for rotations by multiples
of ⇡.

Note also that

@�1@†� =

1

2

@�1@†@@ ˆ = @†@ ˆ =  (2.72)

We can use the raising and lowering operators to define

F =

1

2

@@†@ ˆ = @ (2.73)

G =

1

2

@@@ ˆ = @� (2.74)

After some math, it can be shown that

F = F1 + iF2 = (�1,1 + �2,2) + i(�2,1 � �1,2) (2.75)

and

G = G1 + iG2 = (�1,1 � �2,2) + i(�2,1 + �1,2) . (2.76)

The quantities F and G are called first and second flexion, respectively. It is easy to
show that D

ijk

can be written in terms of F and G. Thus, they describe second order
distortions of the images of lensed sources. Note that F is a spin-1 vector field. Indeed,
it is

~F =

~r . (2.77)

Thus, it describes transformations that are invariant under rotations by 2⇡. For this
reason, F stretches the images along one particular direction, introducing asymmetries
in their shape. On the contrary, G is a spin-3 tensor field. The transformations described
by G are invariant under rotations by 2⇡/3. This is manifested in the ”triangular”
pattern in the image shapes, as shown in Fig. 2.3.

2.6 Occurrence of images

The deflection of light rays causes a delay in the travel-time of light between the source
and the observer. This time delay has two components:

t = tgeom + tgrav (2.78)
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Figure 2.3: First and second order distortions on the image of a circular source. The
unlensed source is shown in the top left panel. The convergence simply changes the
size (bottom left panel). While the shear deforms the image such that it becomes
elliptical (third column of panels from the left), the first and the second flexion intro-
duce curvature and other distortions (second and fourth columns). Courtesy of Peter
Melchior.

The first one has a geometrical reason and is due to the di↵erent path length of the
deflected light rays compared to the unperturbed ones. This time delay is proportional
to the squared angular separation between the intrinsic position of the source and the
location of its image. The second one is the Shapiro delay encountered in Sect. 1.2. It
was derived by comparing the time required to light to travel through a space-time with
an e↵ective refractive index and through empty space, by assuming same trajectories.
it was found to be:

tgrav = � 2

c3

Z
�dz (2.79)

Using the definition of the lensing potential, this can be written as

tgrav = �D
L

D
LS

D
S

1

c
ˆ

 . (2.80)

The geometrical term can be derived from the metric, but it can be estimated also
through a simple geometrical construction, shown in Fig. 2.4. The extra-path of the
light in presence of the lens can be written as
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, (2.81)

and the corresponding time-delay is

tgeom =

�l

c
(2.82)

Both the time delays occur at the lens position, thus they need to be multiplied by a
factor (1 + z

L

) for accounting for the expansion of the universe. Then, the total time
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Figure 2.4: Illustration of the geometrical time delay.

Figure 2.5: Time delay surfaces of an axially symmetric lens for three di↵erent source
positions. Right panel: source and lens are perfectly aligned along the optical axis;
middle panel: the source is no more aligned with the lens. Its projected position on the
lens plane is moved along the line x1 = x2; right panel: the source is moved to an even
larger angular distance from the optical axis.

delay introduced by gravitational lensing at the position ~✓ on the lens plane is1
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Through the e↵ective lensing potential, the lens equation can be written as

(

~✓ � ~�)�r (~✓) = r
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2

(

~✓ � ~�)2 � (~✓)
�
= 0 . (2.84)

Eqs. (2.83) and (2.84) imply that images satisfy the Fermat Principle, rt(~✓) = 0.
Images therefore are located at the stationary points of the time delay surface given by
Eq. (2.83). The Hessian matrix of this surface is

T =

@2t(~✓)

@✓
i
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j

/ (�
ij

� 
ij

) = A (2.85)

We can distinguish between three types of image:

1

The adimensional form of the time delay can be obtained by multiplying and dividing by the factor

(⇠0/D
L

)2.
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Figure 2.6: Profiles of the time delay surfaces displayed in Fig. (2.5) along the line
x1 = x2.

(1) type I images arise at the minima of the time delay surface, where the eigenvalues
of the Hessian matrix are both positive, hence detA > 0 and trA > 0. Therefore,
they have positive magnification;

(2) type II images arise at the saddle points of the time delay surface, where eigenval-
ues have opposite signs. Since detA < 0, they have negative magnification. The
interpretation of a negative µ is that the parity of the image is flipped compared
to the source;

(3) finally, type III images arise at the maxima of the time delay surface. Here, the
eigenvalues are both negative, hence detA > 0 and trA < 0. These images
therefore have positive magnification.

Since the Hessian matrix describes the local curvature of the time delay surface, the
smaller is the curvature along one direction at the position where the image forms,
the larger is its magnification along the same direction. We display in Fig. (2.5) some
examples of the time delay surface for a general axially symmetric lens with core. The
density profile of this lens scales with radius as r�2 outside the core. The surfaces are
plotted for three di↵erent source position ~�: in the left panel the source and the lens
are perfectly aligned along the optical axis passing through the lens center (~y = 0 and
~✓ = 0); in the middle and right panel, the source is moved far away, increasing its
angular distance from the optical axis. In order to better see where the minima and
the maxima arise, we show in Fig. (2.6) the profile along the line x1 = x2 of the same
surfaces. When the source and the lens are perfectly aligned, the minima of the time
delay surface are located on a ring and the maximum is at the lens center. The source
therefore is mapped to a ring image of type I (the so called Einstein Ring) and to a
central type III image. This last one is generally demagnified, since the curvature of the
time delay surface here is large for density profiles peaked at the lens center.

As the source is moved far away from the optical axis, the time delay surface deforms. In
particular, the ring breaks, leading to the formation of a minimum and of a saddle point.
Three images therefore arise. In the case displayed in the middle panel of Fig. (2.5), the
type I image at the minimum and the type II image at the saddle point are stretched
in the tangential direction, since the local curvature of the time delay surface is small
in that direction. This explains the formation of tangential arcs in galaxy clusters.
However, as the source is moved to even larger angular distances from the optical axis,
the saddle point and the maximum move much closer to each other, while the minimum
follows the source. The local curvature of the time delay surface in the radial direction
becomes smaller between the saddle point and the maximum as they get closer. The
images arising at this two points therefore are stretched towards each other. Then a
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radial image forms. When the saddle point and the maximum point touch, two images
disappear and only the image arising at the minimum of the time delay surface remains
(see right panels of Fig. (2.5) and Fig. (2.6)).

Here follows a number of other important properties of the time-delay surface:

• the height di↵erence at di↵erent images of the surface t(~✓) gives the di↵erence in
arrival time between these images. This time delay can be measured if the source
is variable, and provides one way of potentially measuring the Hubble constant;

• in absence of the lens, the time-delay surface is a parabola which has a single
extremum (a minimum); additional extrema have to come in pairs, thus the total
number of images must be odd (as we showed earlier by continously deforming
the time-delay surface);

• when two additional images are formed, they must be a maximum and a saddle
point; in between them, the curvature changes from negative to positive, thus
it is zero between them; remember that detA = 0 is the condition for having
a critical point, where the magnification is (formally) infinite. The critical lines
thus separate multiple-image pairs; these pairs merge and desappear (as discussed
above) at the critical lines. In other words, the critical lines separate regions of
di↵erent image multiplicities.


