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Lensing by large-scale

structures

6.1 Light propagation through an inhomogeneous uni-
verse

In unperturbed spacetime, light travels alog null geodesic lines of the symmetric, ho-
mogenous and isotropic Friedmann-Lemaitre space-time.

In contrast to the earlier treatment, we have to take into account that lenses can now
be of comparable size to the curvature scale of the universe, thus we need to refine the
picture of straight light paths which are instantly deflected by sheet-like, thin lenses.

Starting from null geodesic in space-time, it can be shown that light rays propagate
through the unperturbed Friedmann-Lemaitre spacetime such that the comoving sepa-
ration vector ~x between them changes with the radial coordinate w as

d

2~x

dw2

+K~x = 0 , (6.1)

where K = (H
0

/c)2(⌦
0

+ ⌦

⇤

� 1) is the curvature parameter of the universe. Note
that c/H

0

is the Hubble length, so K has the unit of an inverse squared length, as it
has to be.

⌦

0

is the density parameter of the universe today,

⌦

0

=

✓
3H2

0

8⇡G

◆�1

⇢
0

, (6.2)

while ⌦

⇤

is the density parameter corresponding to the cosmological constant,

⌦

⇤

=

⇤

3H2

0

. (6.3)

H
0

is the Hubble constant. According to present knowledge, ⌦
0

⇡ 0.3, ⌦
⇤

⇡ 0.7 and
K ⇡ 0.

Comoving means that the physical separation ~r between the rays is divided by the scale
factor of the universe,

~x =

~r

a
(6.4)

in order to get rid of the expansion of space-time.

The metric is written as

ds2 = c2dt2 � a2[dw2

+ f2

K

(w)d2⌦] , (6.5)



84

such that dw is the radial, comoving distance element, and f
K

(w) is given by

f
K

(w) =

8
><

>:

1p
K

sin(

p
Kw) (K > 0)

w (K = 0)

1p
�K

sinh(

p
�Kw) (K < 0)

(6.6)

The propagation equation is easily solved. It is an oscillator equation, so that its general
solution is

~x =

~A cos

p
Kw +

~B sin

p
Kw (K > 0) . (6.7)

With the boundary conditions ~x(w = 0) = 0 and d~x/dw|
w=0

=

~✓ , we find

~x(w) = ~✓
1p
K

sin

p
Kw . (6.8)

Generally, for negative and vanishing K, we find

~x(w) = ~✓f
K

(w) . (6.9)

These solutions have a very simple interpretation: obviously, for K = 0, ~x =

~✓w, as
we know in Euclidean space. For positive or negative curvature, the light rays approach
each other, or depart from each other compared to the flat case, as the meridional lines
on a sphere or a hyperboloid do.

Adding perturbations is simple considering that the lensing masses are typically much
smaller than the Hubble radius. Then, space-time can be considered flat in their sur-
roundings, and we can use our earlier result on the deflection angle in the form

d

2~x

dw2

= � 2

c2
~r?� , (6.10)

where it must now be noted that the perpendicular gradient of � must be taken with
respect to the comoving coordinates as well. This means

~r?� =

1

f
K

(w)
~r
~

✓

� . (6.11)

The propagation equation changes to

d

2~x

dw2

+K~x = � 2

c2
~r?� , (6.12)

which now incorporates overall space-time curvature and local perturbations caused by
a potential �.

The inhomogeneus oscillator equation can be solved by
constructing a Greens functionG(w,w0

), which is defined
on the square 0  w  w

s

, 0  w0  w
s

, where w
s

is
the coordinate distance to the source.

According to the definition of a Green function, G(w,w0
) must satisfy the following

conditions
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• G(w,w0
) is continously di↵erentaible in both triangles A

1,2

and satisfies the ho-
mogeneous di↵erential equation

d

2~x

dw2

+K~x = 0 ; (6.13)

• G(w,w0
) is continous on the entire square;

• the derivative of G(w,w0
) with respect to w jumps by 1 on the boundary between

A
1

and A
2

;

• as a function of w, G(w,w0
) satisfies the homogeneous boundary conditions on

the solution.

Accordingly, we set up

G(w,w0
) =

⇢
A(w0

) cos

p
Kw +B(w0

) sin

p
Kw on A

1

C(w0
) cos

p
Kw +D(w0

) sin

p
Kw on A

2

. (6.14)

The homogeneous boundary conditions demand A = B = 0.

Continuity requires

C cos

p
Kw0

+D sin

p
Kw0

= 0 , (6.15)

and the jump in the derivative implies

�C sin

p
Kw0

+D cos

p
Kw0

=

1p
K

. (6.16)

Thus,

C = � 1p
K

sin

p
Kw0 (6.17)

D =

1p
K

cos

p
Kw0 . (6.18)

This implies

G(w,w0
) =

(
0 (w < w0

)

1p
K

sin

p
K(w � w0

) (w > w0
)

. (6.19)

More generally, i.e. for arbitrary sign of K, we find instead

G(w,w0
) =

⇢
0 (w < w0

)

f
K

(w � w0
) (w > w0

)

. (6.20)

Therefore the general solution of the propagation equation reads

~x = f
K

(w)~✓ � 2

c2

Z
w

0

dw0f
K

(w � w0
)

~r?� . (6.21)

As in the single-lens plane approach, we evaluate this integral along the unperturbed
path f

K

(w)~✓.

The deflection angle is defined as the deviation between the perturbed and the unper-
turbed path,

~↵ =

f
K

(w)~✓ � ~x

f
K

(w)
=

2

c2

Z
w

0

dw0 fK(w � w0
)

f
K

(w)
~r?�[fK(w0

)

~✓, w0
] . (6.22)
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This is now the deflection angle accumulated along a light path propagating into direc-
tion ~✓ out to the coordinate distance w. Hence, we denote it as ~↵(~✓, w).

For a spatially flat universe, K = 0 and f
K

(w) = w. Then,

~↵(~✓, w) =

2

c2

Z
w

0

dw0
✓
1� w0

w

◆
~r?�(w

0~✓, w0
)

=

2w

c2

Z
1

0

dy(1� y)~r?�(wy~✓, wy) . (6.23)

6.2 E↵ective convergence

In the single lens-plane case, the convergence is one half the divergence of ~↵. Analo-
gously, we define here an e↵ective convergence for large-scale structure lenses,


e↵

(

~✓, w) =

1

2

~r
~

✓

~↵(~✓, w)

=

1

c2

Z
dw0 fK(w0

)f
K

(w � w0
)

f
K

(w)
4(2)�[f

K

(w0
)

~✓0, w0
] , (6.24)

where 4(2) is the two-dimensional Laplacian with respect to comoving coordinates,

4(2)

=

~r2

? =

@2

@x2

+

@2

@y2
. (6.25)

We now do the same as we did when we introduced the lensing potential: we replace

4(2) ! 4 =

@2

@x2

+

@2

@y2
+

@2

@z2
, (6.26)

and assume that @�/@z = 0 at the boundaries of the perturbations. Then, we can
write


e↵

=

1

c2

Z
w

0

dw0 fK(w0
)f

K

(w � w0
)

f
K

(w)
4�(f

K

(w0
)

~✓, w0
) , (6.27)

and substitute for 4� using Poisson’s equation.

In its original form, Poisson’s equation reads

4
r

� = 4⇡G⇢ , (6.28)

where the Laplacian is now taken with respect to physical coordinates. Introducing the
density contrast

� ⌘ ⇢� ⇢

⇢
, (6.29)

we can write

4� = 4⇡G⇢(1 + �)a2 = 4⇡G⇢
0

a�1

(1 + �) , (6.30)

where we have inserted ⇢a�3 as for ordinary (non-relativistic) matter. Decoupling the
potential into a background potential

4� = 4⇡G⇢
0

a�1 , (6.31)
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and a peculiar (perturbing) potential �, we have

4� = 4⇡G⇢
0

a�1� . (6.32)

Using further

⇢
0

= ⌦

0

3H2

0

8⇡G
(6.33)

yields the Poisson equation that we need,

4� =

3

2

H2

0

⌦

0

�

a
. (6.34)

The e↵ective convergence can then be written as


e↵

(

~✓, w) =
3⌦

0

2

✓
H

0

c

◆
2

Z
w

0

dw0 fK(w0
)f

K

(w � w0
)

f
K

(w)

�[f
K

(w0
)

~✓, w0
]

a
. (6.35)

Notice the similarity of the distance factor with the factor D
L

D
LS

/D
S

that we had in
the single-lens case.

If the sources are distributed in redshift or, equivalently, in coordinate distance w, the
mean e↵ective convergence is

h
e↵

i(~✓) = w

Z
wH

0

dwG(w)
e↵

(

~✓, w) , (6.36)

where G(w)dw is the probability to find a source within dw of w. Then we can write

h
e↵

i(~✓) = 3H2

0

⌦

0

2c2

Z
wH

0

dwW (w)f
K

(w)
�[f

K

(w)~✓, w]

a(w)
, (6.37)

with the e↵ective weight function

W (w) =

Z
wH

w

dw0G(w0
)

f
K

(w0 � w)

f
K

(w0
)

. (6.38)

6.3 Limber’s equation

It is impossible to predict exactly which density fluctuations a light ray will find on its
way. Concerning the e↵ective convergence, we thus need a statistical approach.

We want to compute the correlation function

h(~✓)(~✓ + ~�)i
~

✓

= ⇠


(�) , (6.39)

in which the average extends over all positions ~✓ on the sky, and over all directions of
the separation vector ~�. Due to isotropy, the result cannot depend on the direction of
~�.

It is typically more convenient to go into Fourier space and to use the power spectrum
instead. Suppose we have a function g(x) of n-dimensional space, whose correlation
function is

⇠
gg

(y) = hg(x)g(x+ y)i
x

. (6.40)
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We Fourier transform g(x),

ĝ(k) =

Z
d

nxg(x) exp (ikx) g(x) =

Z
d

nk

(2⇡)n
ĝ(k) exp (�ikx) (6.41)

and compute the correlation function in Fourier space,

hĝ(k)ĝ⇤(k0)i =

⌧Z
d

nxg(x) exp (ikx)

Z
d

nx0g(x0
) exp (�ik0x0

)

�

=

Z
d

nx exp (ikx)

Z
d

nx0
exp (�ik0x0

)hg(x)g(x0
)i . (6.42)

Inserting y+x = x0 and using the isotropy of the correlation function, we can continue
to compute

hĝ(k)ĝ⇤(k0)i =

Z
d

nx exp [i(k � k0)x]

Z
d

ny exp (�ik0y)⇠
gg

(y)

= (2⇡)n�
(n)

D

(k � k0)P
g

(k) , (6.43)

where we have defined the power spectrum

P
g

(k) ⌘
Z

d

ny exp (�iky)⇠
gg

(y) (6.44)

as the Fourier transform of the correlation function. �(n)
D

is the Dirac delta function in
n dimensions.

Suppose we are given the power spectrum of a three-dimensional function �(~x). What
is the power spectrum of a two-dimensional projection

g(~✓) =

Z
dwq(w)�[f

K

(w)✓, w] , (6.45)

where q(w) is a weighting function?

Its correlation function is

⇠
gg

= hg(~✓)g(~✓0)i

=

Z
q(w)dw

Z
q(w0

)dw0h�[f
K

(w)~✓, w]�[f
K

(w0
)

~✓, w0
]i . (6.46)

Inserting the Fourier transform of �, we find

⇠
gg

=

Z
q(w)dw

Z
q(w0

)dw0
Z

d

3k

(2⇡)3

Z
d

3k0
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hˆ�(~k)ˆ�⇤(~0)i exp (�if

K

(w)~✓~k?)

exp (if
K

(w0
)

~✓0~k0?) exp (�ik
s

w) exp (ik0
s

w0
) , (6.47)

where we have split the wave vector ~k into a perpendicular and a parallel part, ~k? and
k
s

, respectively. The average over ˆ�ˆ�⇤ can be replaced by the power spectrum of �,

⇠
gg

=

Z
q(w)dw

Z
q(w0

)dw0
Z

d
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(2⇡)3
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�

(k) exp [�i(f
K

(w)~✓ � f
K

(w0
)

~✓0)~k?]

· exp [�ik
s

(w � w0
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=

Z
q2(w)dw

Z
d

3k

(2⇡)3
P
�

(k) exp [�if
k

(w)(~✓ � ~✓0~k?]

·
Z

d(�w) exp (�ik
s

�w) . (6.48)
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The last factor,

Z
d(�w) exp (�ik

s

�w) = 2⇡�
D

(k
s

) , (6.49)

means that only such modes contribute which are perpendicular to the line-of-sight,
~k = (

~k?, 0).

The k
s

-integral can the be carried out and we get

⇠
gg

=

Z
q2(w)dw

Z
d

2k?
(2⇡)2

P
�

(|~k?|) exp (ifK(w)(~✓ � ~✓0)~k?) . (6.50)

The di↵erence ~✓�~✓0 is the separation vector between the two rays. Defining � ⌘ |~✓�~✓0|
and using isotropy, we get

⇠
gg

(�) =

Z
q2(w)dw

Z
d

2k

(2⇡)2
P
�

(k) exp (�if
K

(w)~k~�)

=

Z
q2(w)dw

Z
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(2⇡)
P
�

(k)J
0

[f
K

(w)�k] . (6.51)

The power spectrum of the projected quantity g(~✓) is

P
g

(l) =

Z
d

2�⇠
gg

(�) exp (i~l~�)

=

Z
q2(w)dw

Z
d

2k

(2⇡)2
P
�

(k) exp {i[~l � f
K

(w)~k]~�}

=

Z
dw

q2(w)

f2

K

(w)
P
�

✓
l

f
K

(w)

◆
. (6.52)

We can now simply read the power spectrum of the e↵ective convergence o↵ the ex-
pression for 

e↵

. With

q(w) =
3H2

0

⌦

0

2c2
W (w)f

K

(w)
1

a
, (6.53)

we have

P


(l) =
9H4

0

⌦

2

0

4c2

Z
wH

0

W 2

(w)

a2
P
�

✓
l

f
K

(w)

◆
dw . (6.54)

This power spectrum will be central to all further considerations.

For example, the convergence correlation function is

⇠


(�) =

Z
d

2l

(2⇡)2
P


(l) exp (�i~l~�)

=

Z
ldl

2⇡
P


(l)J
0

(l�) . (6.55)

The magnification is, as in the single lens-plane case,

µ =

1

detA
A = I � @~↵

@~✓
(6.56)

) µ ⇡ 1 +

~r
~

✓

· ~↵ = 1 + 2
e↵

. (6.57)
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Thus, the magnification fluctuation, i.e. its deviation from unity, has the correlation
function

h�µ(~✓)�µ(~✓ + ~�)i = ⇠
µ

(�) = 4⇠


(�) . (6.58)

Its r.m.s. value is

h�µ2i1/2 = ⇠1/2
µ

(0) =

Z 1

0

ldl

2⇡
P


(l)

�
1/2

, (6.59)

which gives the typical magnification of cosmic sources by large-scale structures.

6.4 Shear correlation functions

Compared to the convergence, the shear depends on the direction with respect to which
it is defined. Let  be the e↵ective lensing potential and the separation vector ~� between
any two points have a polar angle ↵. Then, the tangential component of the shear with
respect to that direction is

�
t

= �(cos2 ↵� sin

2 ↵) = � cos 2↵ , (6.60)

if ↵ is the polar angle with respect to the principal-axis frame of the shear. Of course,
↵ will vary, so we have to average over it.

Let us now define the correlation function of the tangential shear,

h�
t

�0
t

i ⌘ ⇠
tt

(�) , (6.61)

which can be obtained from the power spectrum of the tangential shear component,

⇠
tt

(�) =

Z
d

2l

(2⇡)2
P
�t(l) exp (�i~l~�) . (6.62)

According to its definition, the tangential component of the shear has the Fourier
transform

�̂
t

= �1

2

(k2
1

+ k2
2

)

ˆ 

=

k2

2

(cos

2 ↵� sin

2 ↵) ˆ . (6.63)

Thus, its power spectrum is

P
�t =

k4

4

(cos

2 ↵� sin

2 ↵)2P
 

. (6.64)

We know the power spectrum of ,

P


=

1

4

(k2
1

+ k2
2

)

2P
 

=

k4

4

P
 

, (6.65)

so that we can infer P
�t :

P
�t = (cos

2 ↵� sin

2 ↵)2P


. (6.66)

Now, (cos2 ↵� sin

2 ↵) = cos

2

2↵ = 1/2(1 + cos 4↵), from which we find

h�
t

�0
t

i = 1

2

Z
ldl

2⇡
P


(l)[J
0

(l�) + J
4

(l�)] . (6.67)
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Similarly, the “cross-component” of the shear is

�
x

= � sin 2↵ , (6.68)

and its autocorrelation function is

h�
x

�0
x

i = ⇠
xx

(�) =

Z
d

2l

(2⇡)2
P
�x
(l) exp (�i~l~�) . (6.69)

As before, we find

P
�x

= k2
1

k2
2

P
 

= k4 cos2 ↵ sin

2 ↵P
 

= 4 cos

2 ↵ sin

2 ↵P


. (6.70)

Since

4 cos

2 ↵ sin

2 ↵ = 1� cos

2

2↵ = 1� 1

2

� 1

2

cos 4↵

=

1

2

(1� cos 4↵) , (6.71)

we find

h�
x

�0
x

i = 1

2

Z
ldl
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P


(l)[J
0

(l�)� J
4

(l�)] . (6.72)

Finally, the mixed correlation function,

h�
t

�0
x

i (6.73)

follows from the mixed power spectrum,

P
�t�x

=

1

2

(k2
1

� k2
2

)k
1

k
2

4

k4
P

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2 ↵� sin

2 ↵) sin↵ cos↵P


. (6.74)

Now, 2(cos2 ↵ � sin

2 ↵) sin↵ cos↵ = cos 2↵ sin 2↵ = cos 2↵ sin 2↵ = 1/2 sin 4↵, and
this factor makes the correlation function vanish, thus

⇠
tx

(�) = 0 . (6.75)

It therefore makes sense to define the correlation functions

⇠±(�) ⌘ h�
t

�0
t

i± h�
x

�0
x

i , (6.76)

and

⇠
x

(�) ⌘ h�
t

�0
x

i . (6.77)

such that

⇠
+
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Z
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
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(l�) , (6.78)

⇠�(�) =

Z
ldl

2⇡
P


(l)J
4

(l�) , (6.79)

and the expectation value of ⇠
(

�) = 0. For any measurement of cosmic shear, ⇠
x

(�) = 0

provides a test for the reliability of the measurement, because ⇠
x

(�) 6= 0 points at
systematic errors.
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6.5 Shear in apertures and aperture mass

Another convenient measure for the magnitude of the shear is to compute the mean
shear in a (circular) aperture of radius ✓,

�
av

(✓) =

Z
✓

0

d
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⇥

⇡⇥2

�(~⇥) , (6.80)

and to study its variance,
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The latter equality follows from the fact that the correlation functions of convergence
and absolute value of the sheare are identical, as is best seen from their power spectra.
We have
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=
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=

1

4

(k2
1

+ k2
2

)

2P
 

=
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. (6.82)

Inserting the convergence power spectrum into the shear variance, we obtain
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|2i(✓) =

Z
✓

0

d

2

⇥

⇡⇥2

d

2

⇥

0

⇡⇥02

Z
d

2l

(2⇡)2
P


(l) exp(�i~l(~⇥� ~
⇥

0
)

= 4⇡2

Z 1

0

ldl

2⇡
P


(l)


J
1

(l⇥)

⇡l⇥

�
2

, (6.83)

for which we have used

Z
1

0

xdxJ
0

(ax) =
1

a
J
1

(a) . (6.84)

The aperture mass is defined as a weighted integral over the (e↵ective) convergence
within a (circular) aperture,

M
ap

(✓) =

Z
✓

0

d
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⇥U(

~
⇥)

e↵

(

~
⇥) . (6.85)

If the weight function satisfies the condition

Z
✓

0

⇥d⇥U(⇥) = 0 , (6.86)

i.e. if it is compensated, the aperture mass can also be written as

M
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(✓) =

Z
✓

0

d

2

⇥Q(⇥)�
t
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~
⇥) , (6.87)
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where �
t

is the tangential shear with respect to the aperture centre. Q is related to U
through

Q(x) =
2

x2

Z
x

0

dx0x0U(x0
)� U(x) . (6.88)

A common choice (but not a neccessary one) is
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� x2

◆
, (6.89)

with x ⌘ ✓/⇥. This implies

Q(⇥) =

6

⇡⇥2

x2

(1� x2

) . (6.90)

Using this choice the variance of the aperture mass turns out to be
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where

J(l✓) ⌘ 12

⇡(l✓)2
J
4

(l✓) . (6.92)

Obviously, the magnification correlation, the shear correlation functions ⇠
p

m, the shear
in apertures or the aperture mass all measure weighted integrals of P



(l), where the
weight functions can be more or less peaked.

6.6 E- and B-modes

Shear caused by gravitational lensing cannot have a curl component because of its origin
in a scalar potential. If there is a curl component in measured shear, it must therefore be
caused by systematic e↵ects. In analogy to electromagnetic fields, real (scalar) modes
are called E-modes, others (vectorial modes) are called B-modes.

Assuming E- and B-modes to be independent, the shear powerspectrum can be written
as

h�(~l)�⇤(~l0)i = (2⇡)2�2
D

(

~l �~l0)[P
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(l) + P
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(l)] . (6.93)

As before, we now use

�
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= �(cos2 ↵� sin

2 ↵) = � cos 2↵ (6.94)

�
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= �2 sin↵ cos↵ = � sin 2↵ , (6.95)

and find
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and
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Z
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(l�) . (6.97)

Using Fourier transforms, these relations can be inverted to yield

P
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P
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This allows quantifying E- and B-mode contributions to the signal.

In particular, the aperture mass is only sensitive to E modes, while

M
ap? ⌘

Z
✓

0

⇥d⇥Q(⇥)�
x

(⇥) (6.100)

is only sensitive to B-modes. That way, they can be easily compared.

6.7 Lensing of the Cosmic Microwave Background

Lensing also changes the appearance of the CMB, because temperature fluctuations
originally at a position ~� are shifted to ~✓ = ~� + ~↵ due to lensing.

The CMB is characterized by its relative temperature fluctuations

⌧(~✓) ⌘ T (~✓)

hT i (6.101)

and their power spectrum

P
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2�⇠
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(�) exp(�i~�~l) . (6.102)

We wish to calculate how the power spectrum of the CMB will change due to lensing.

The temperature autocorrelation function without lensing would be

h⌧(~✓)⌧(~✓ + ~�)i , (6.103)

with lensing it is
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)i , (6.104)

where ~↵ = ~↵(~✓) and ~↵0
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(

~✓0); ~✓0 = ~✓ + ~�.

In terms of Fourier transforms
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thus
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