GRAVITATIONAL LENSING LECTURE 12

Docente: Massimo Meneghetti AA 2015-2016

TODAY'S LECTURE

.

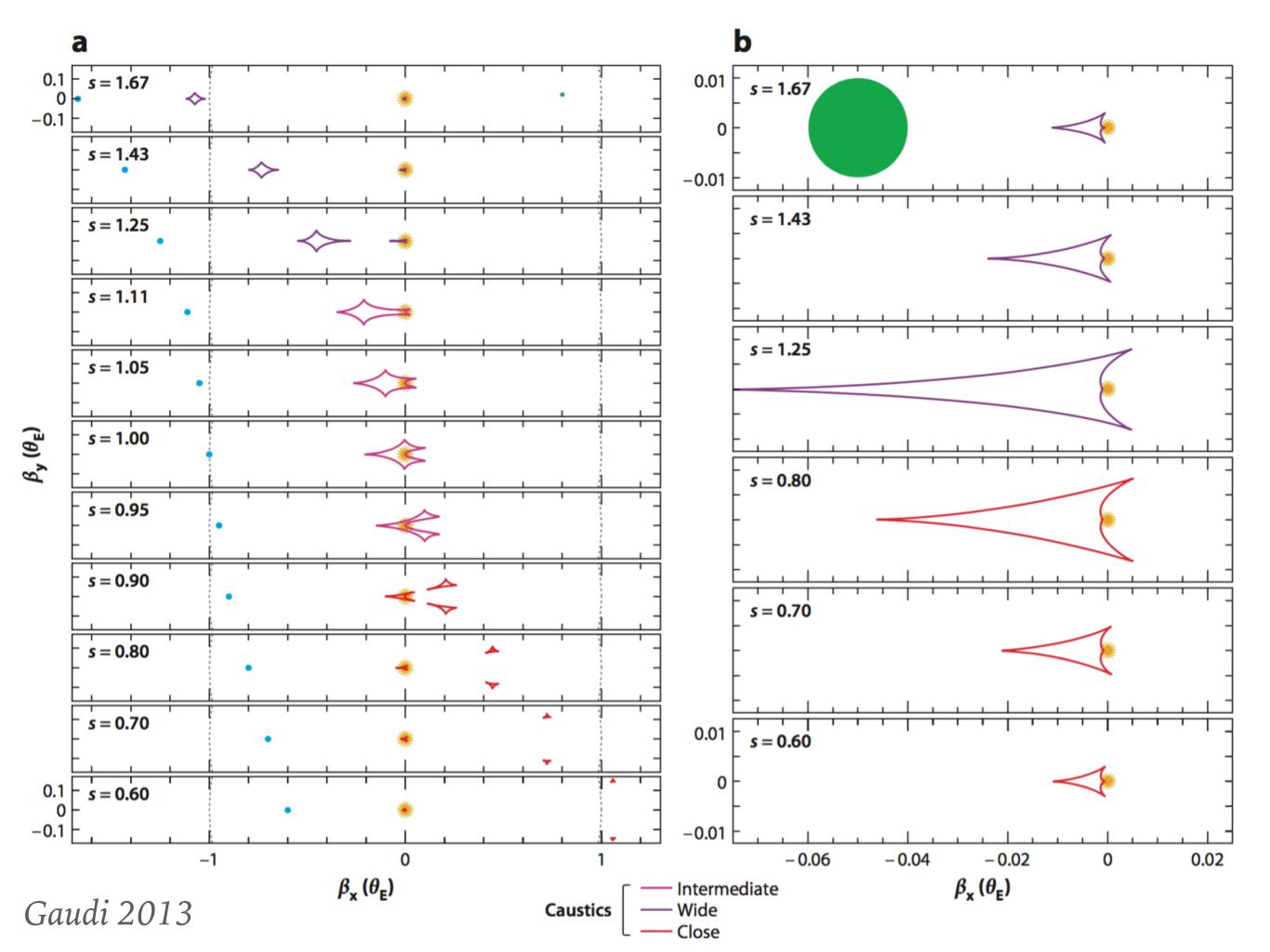
- Lensing by multiple point masses
 - ► Binary lenses
 - Planetary microlensing

PLANETARY MICROLENSING

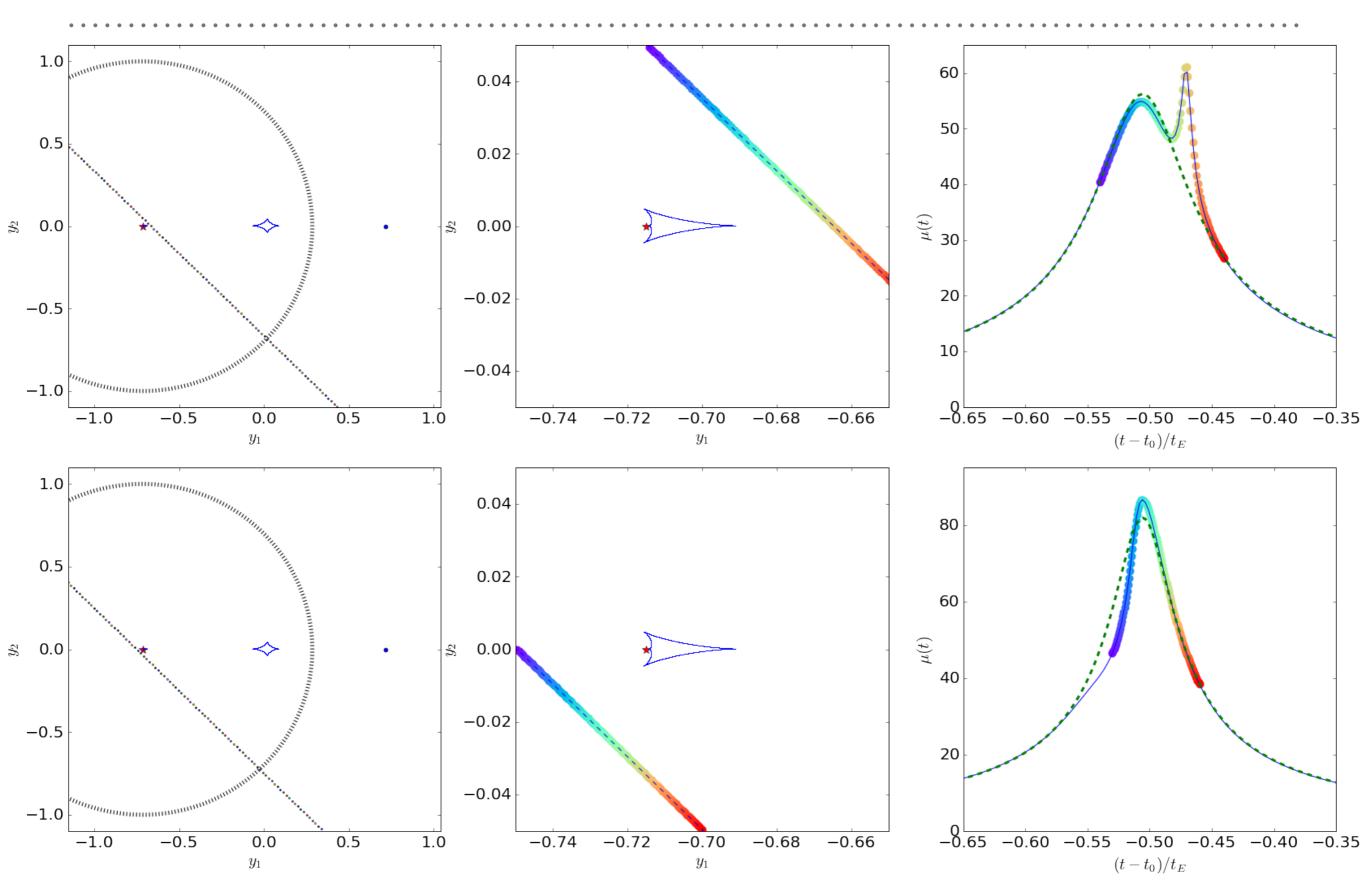
- Let us consider the system consisting of an host star and a planet orbiting around it.
- ► This is an example of **binary** lens
- ➤ The host star is of course much heavier than the planet!
 - > example: for a Jupiter-like planet q=0.001
 - ► example: for a Earth-like planet q=0.000003

WHAT KIND OF SIGNAL?

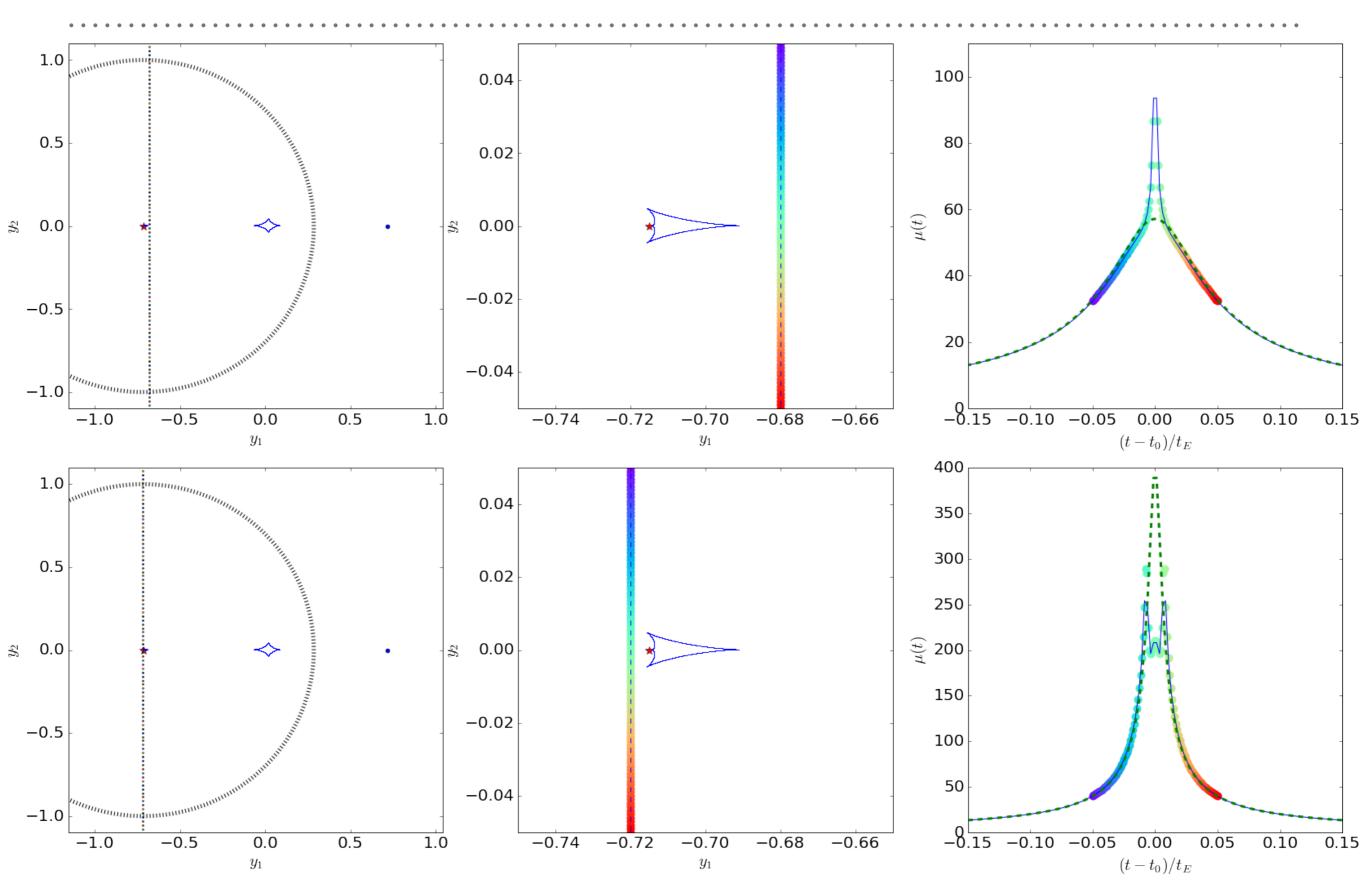
- ➤ The light curve is that of the star...
- The planet produces only a small perturbation to the magnification pattern, localized in a small region around the caustics
- Must cross one of these perturbed regions in order for the planet to be detected.
- The shape of the perturbation is determined by the caustic configuration...



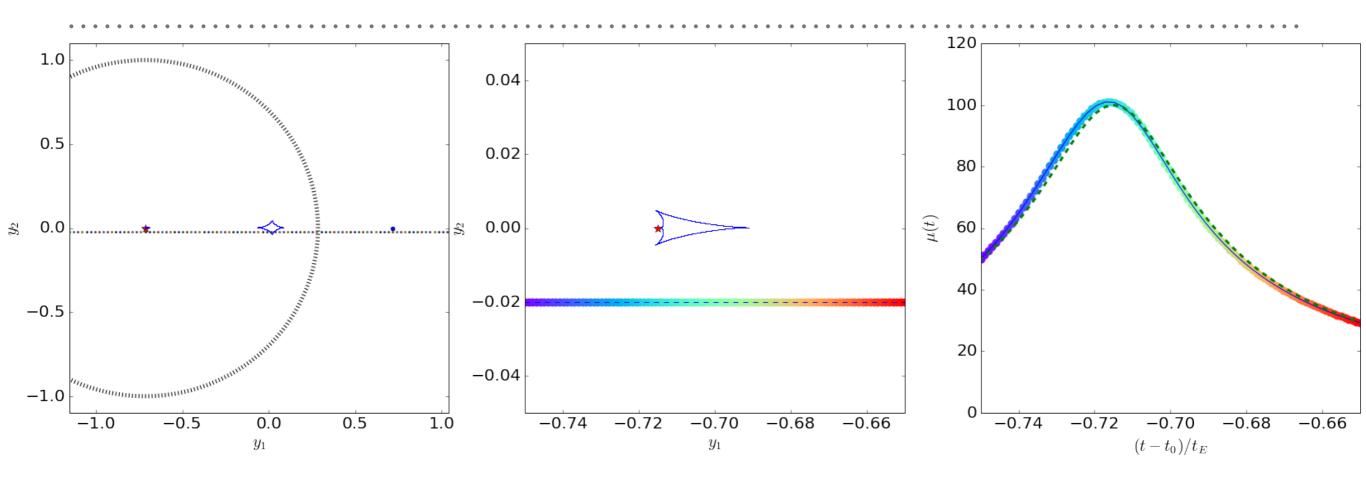
CENTRAL CUSP PERTURBATIONS



CENTRAL CUSP PERTURBATIONS

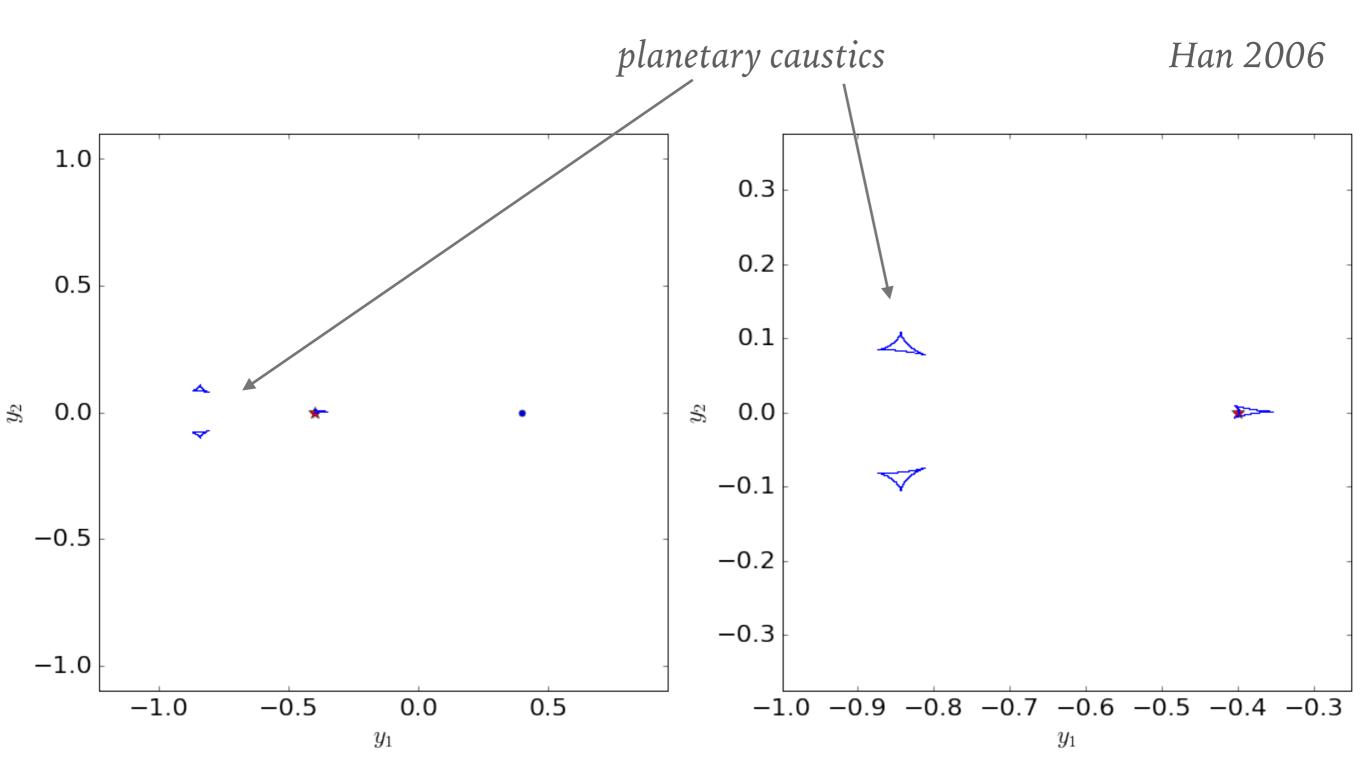


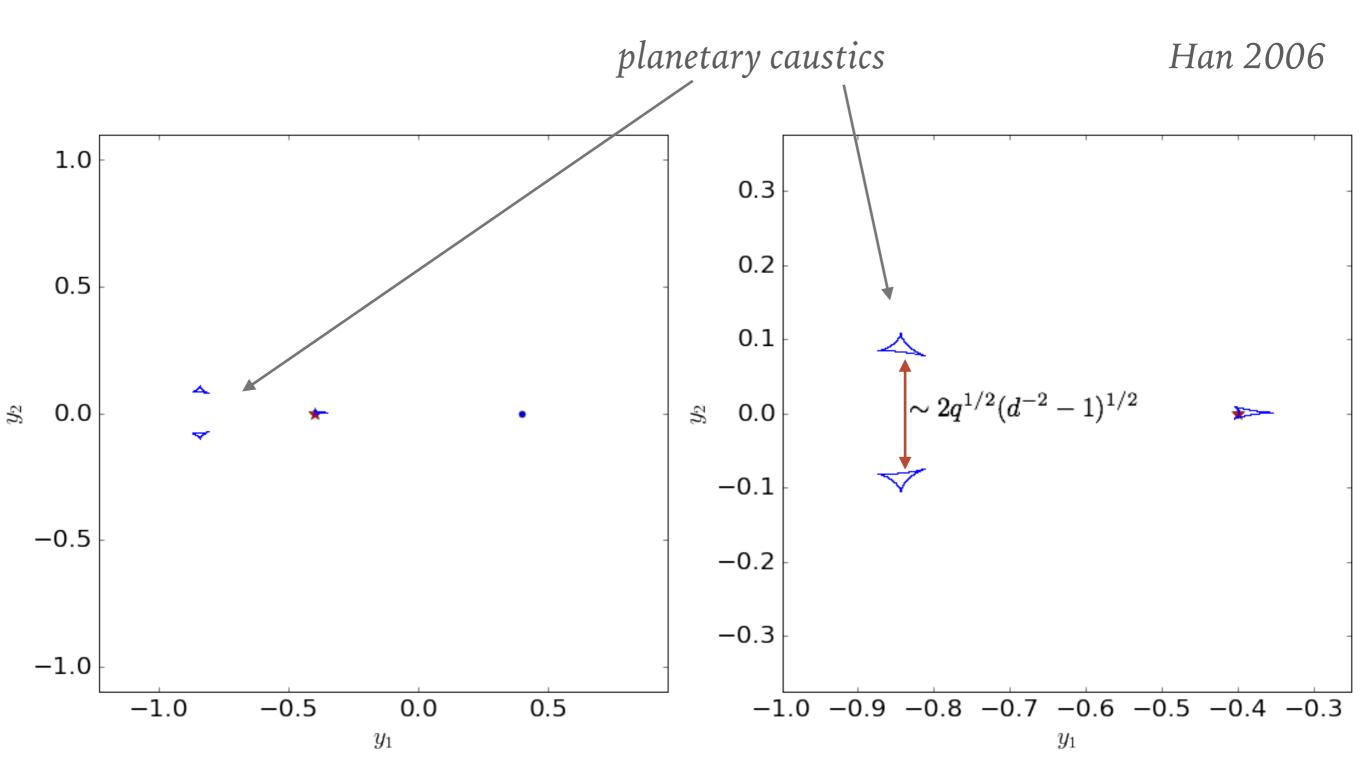
CENTRAL CUSP PERTURBATIONS

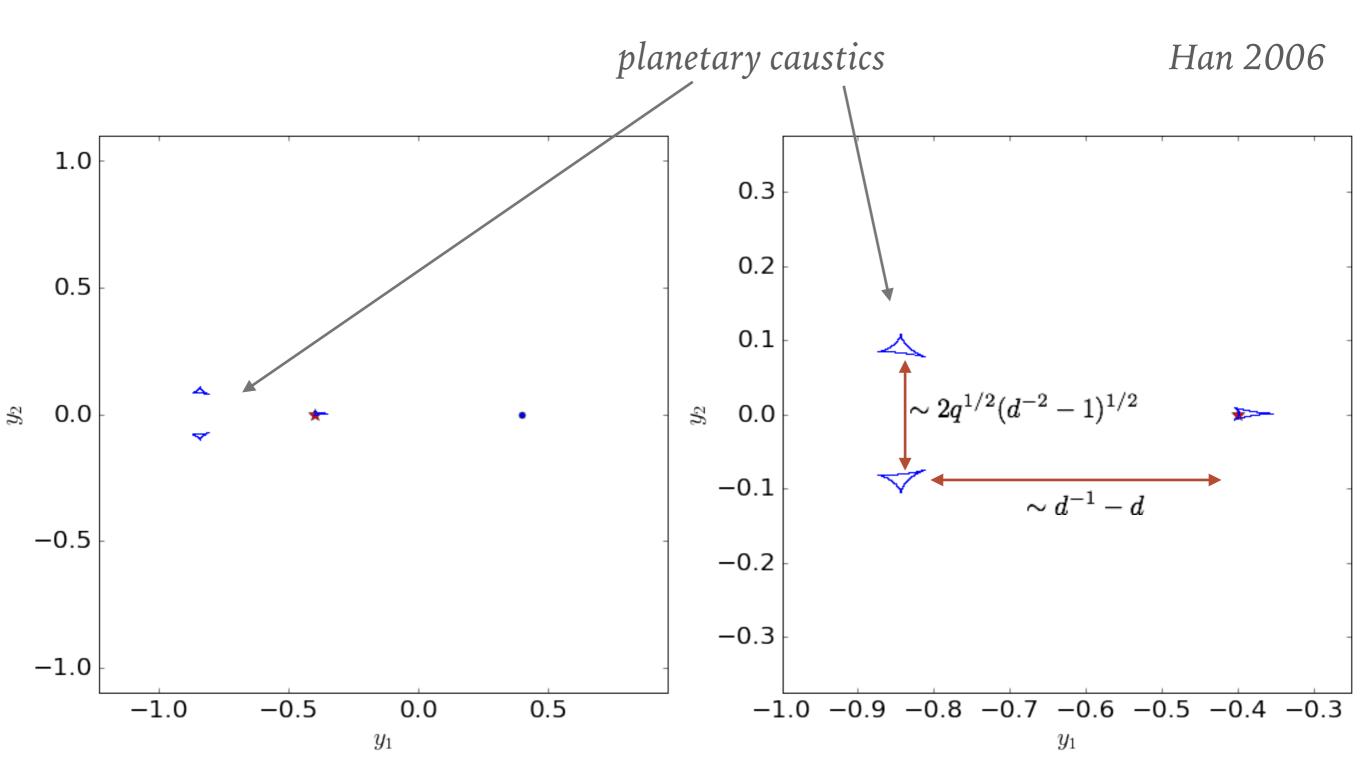


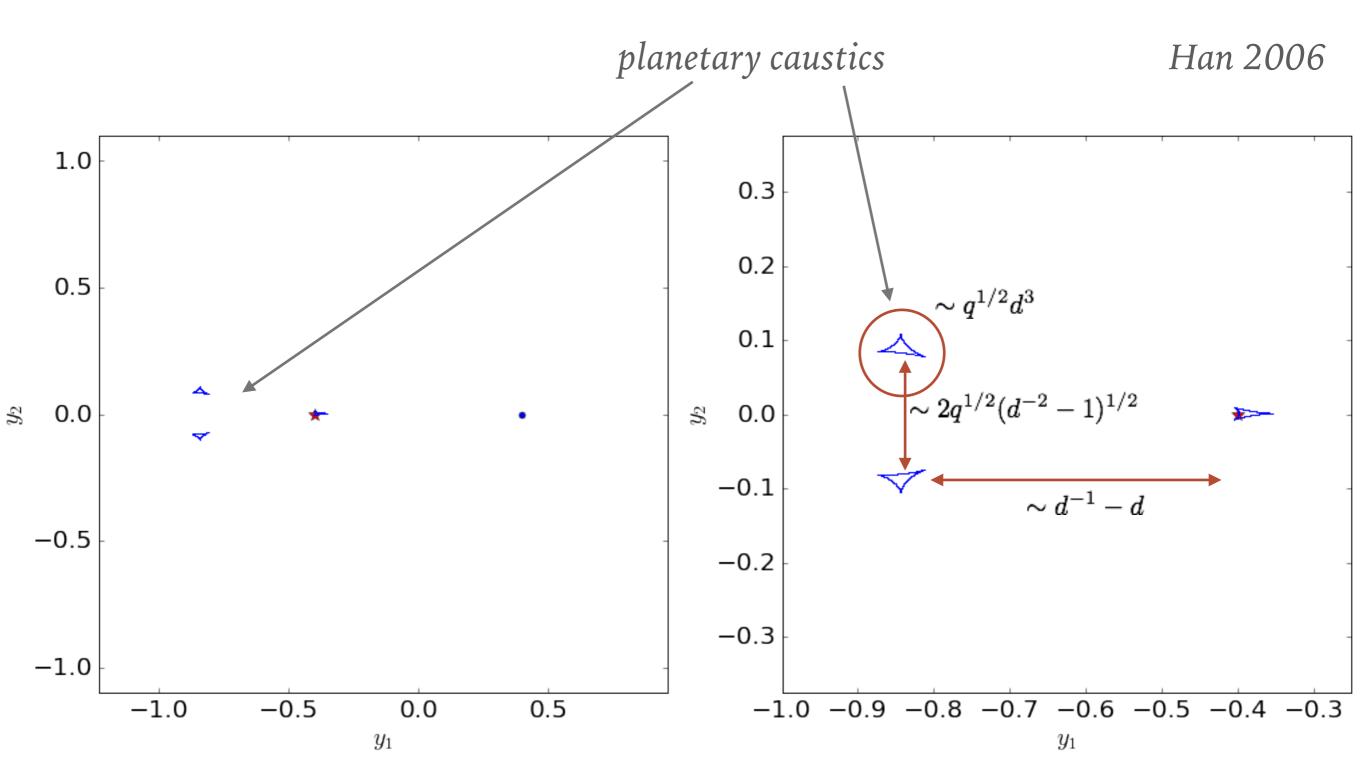
PLANET DETECTION THROUGH CENTRAL CUSP PERTURBATIONS

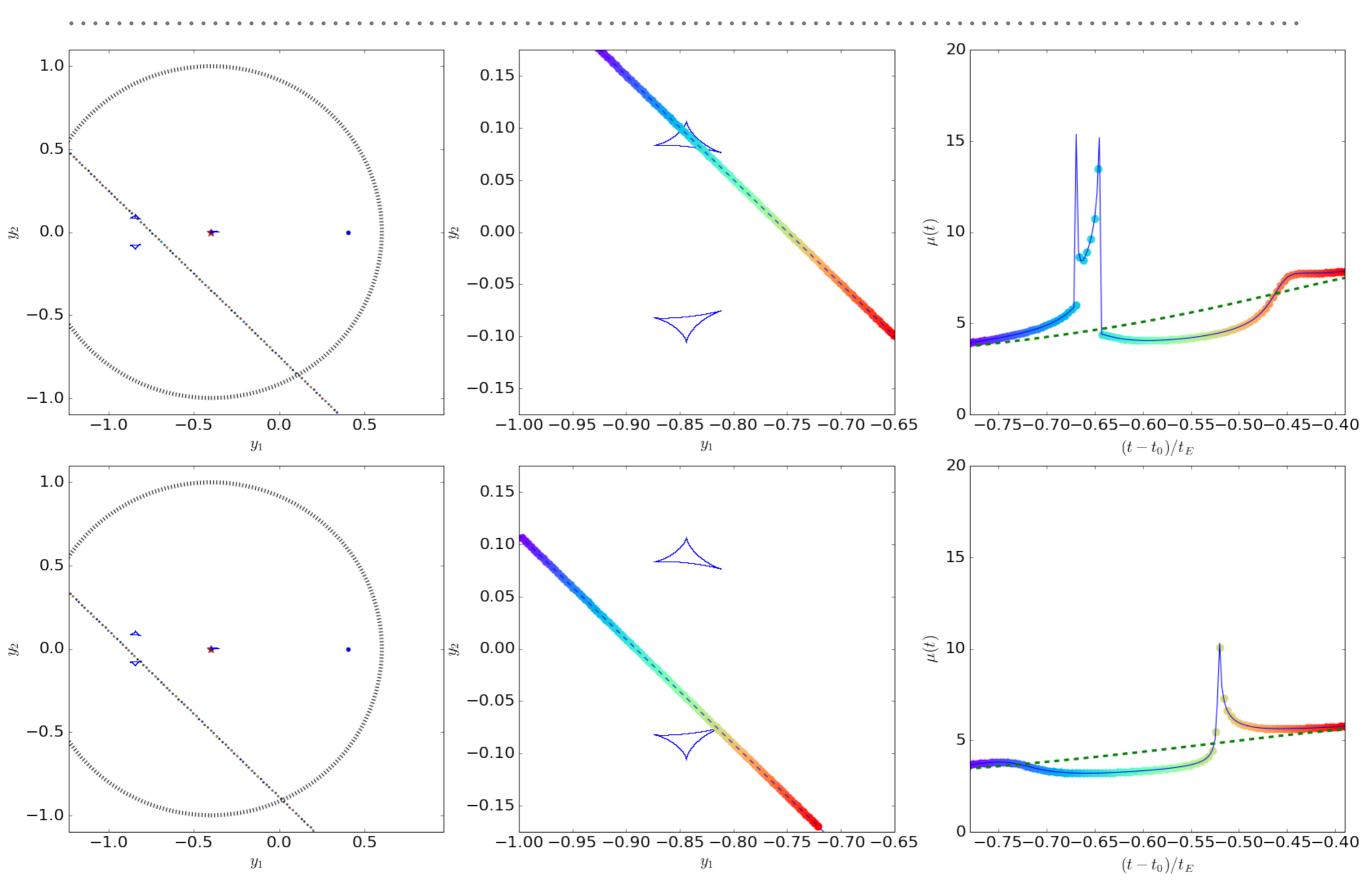
- Only possible in the case of high magnification events (sources passing very close to the host stars)
- ► For this reason, they are rare events
- ► Advantages:
 - ► near the peak of the event
 - ► can sometimes be predicted in advance
 - high magnification makes possible to follow-up the events using small telescopes
 - more accurate photometry (and easier separation of source and lens
- ► Disadvantages:
 - degeneracy wide-close topologies

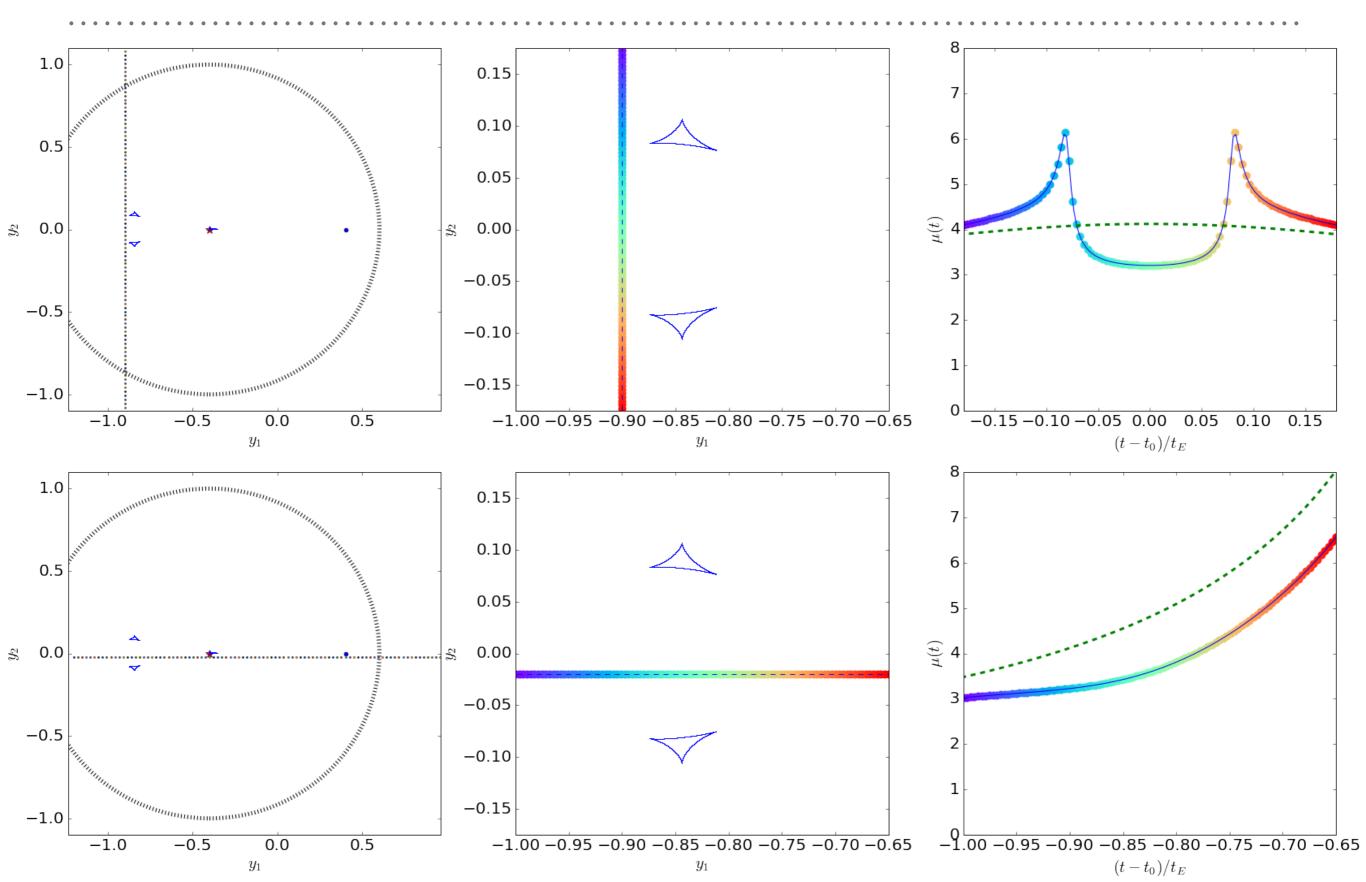


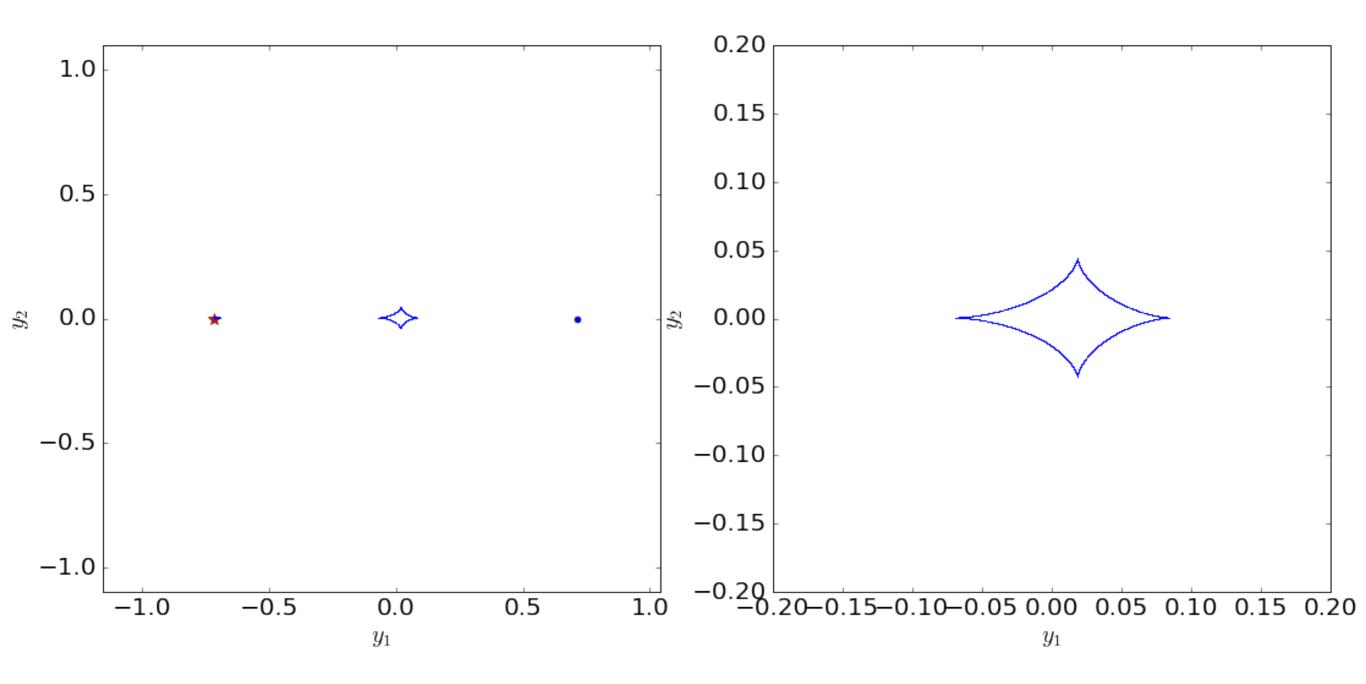


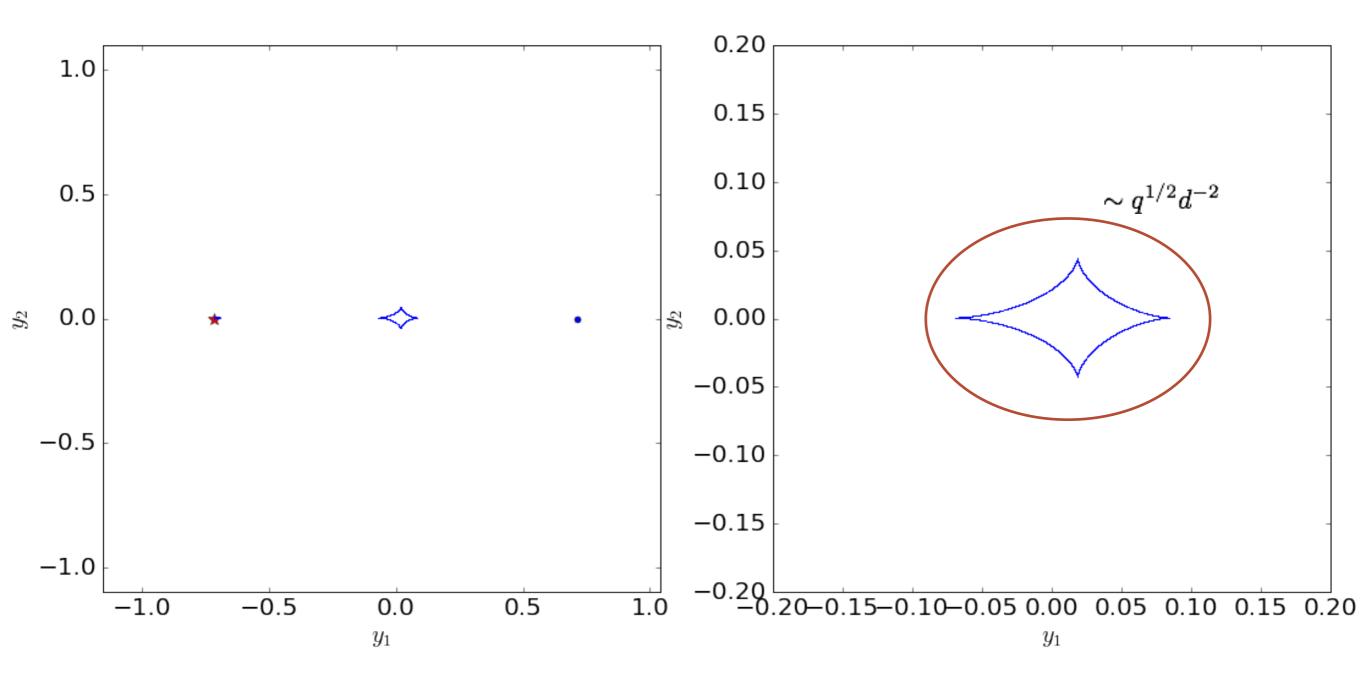


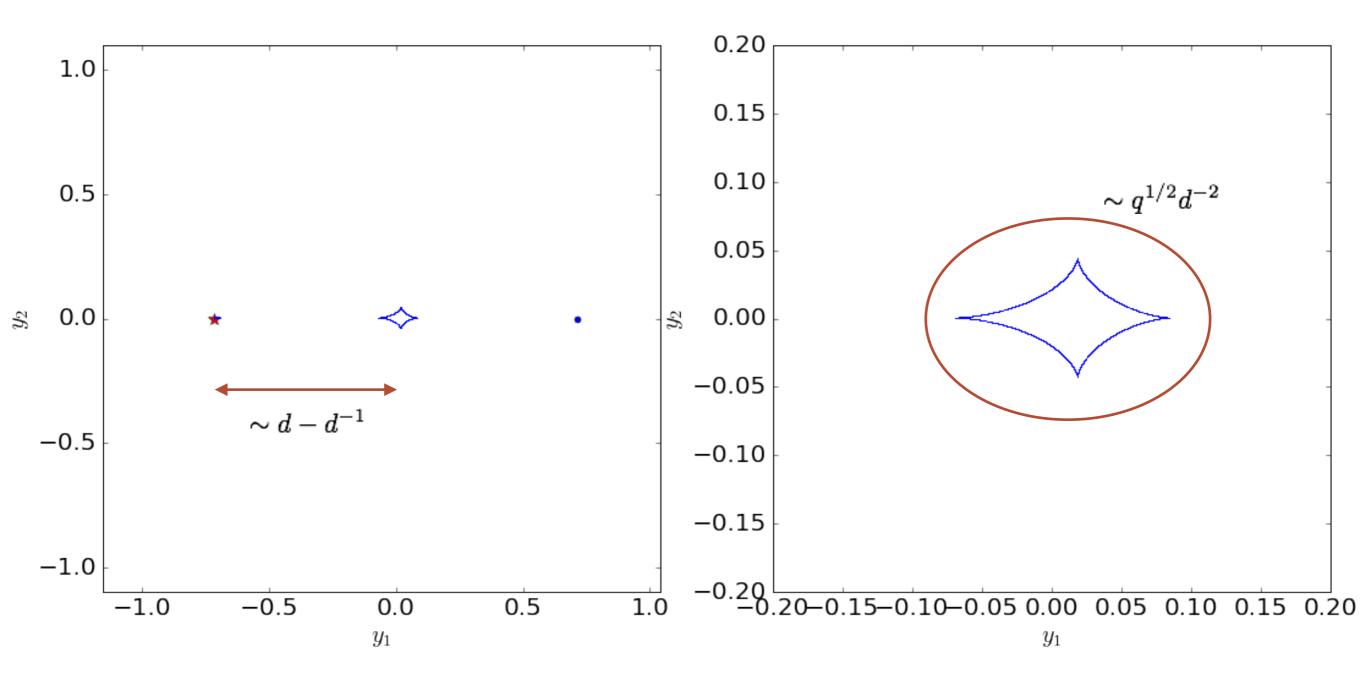


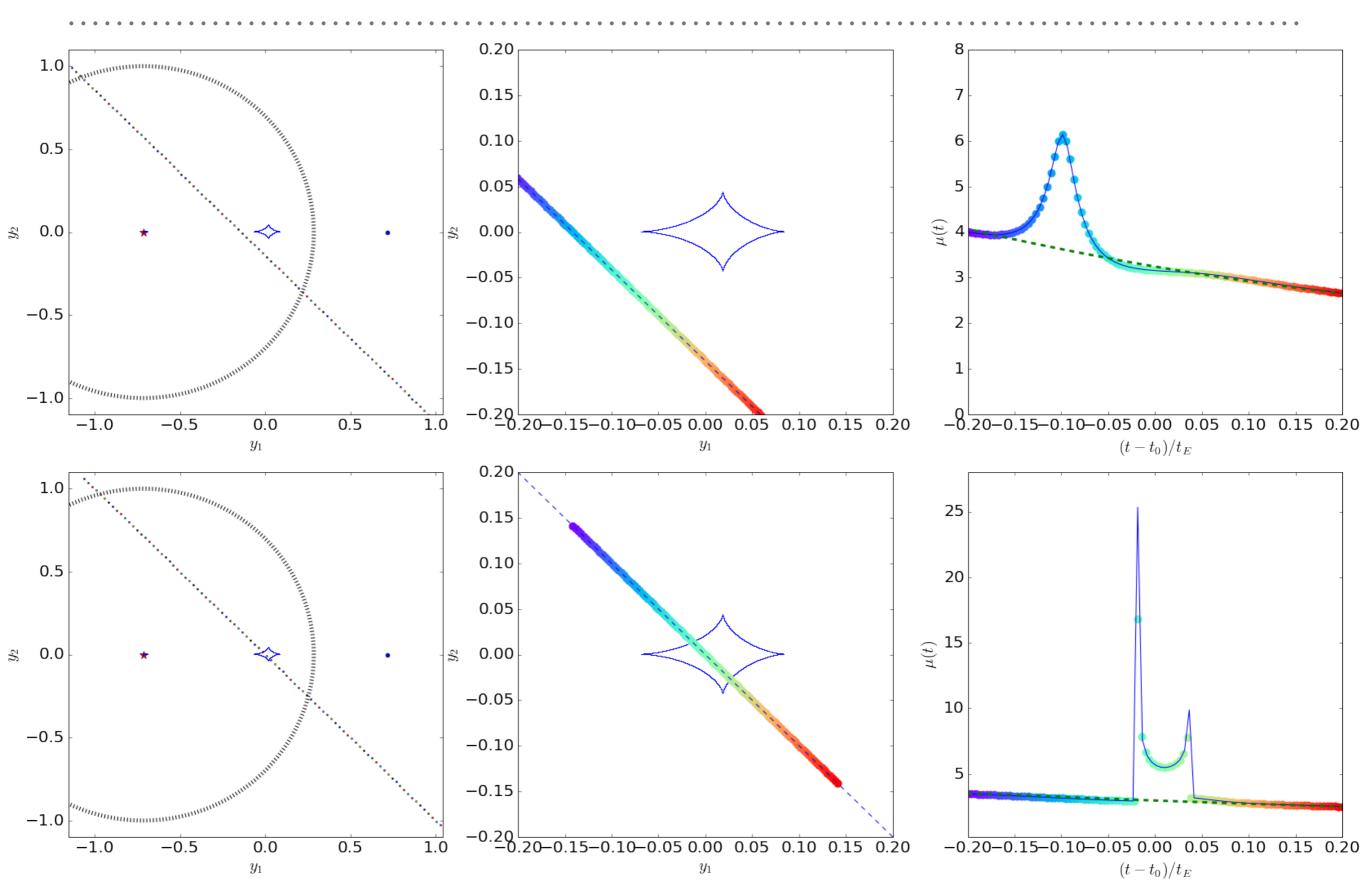


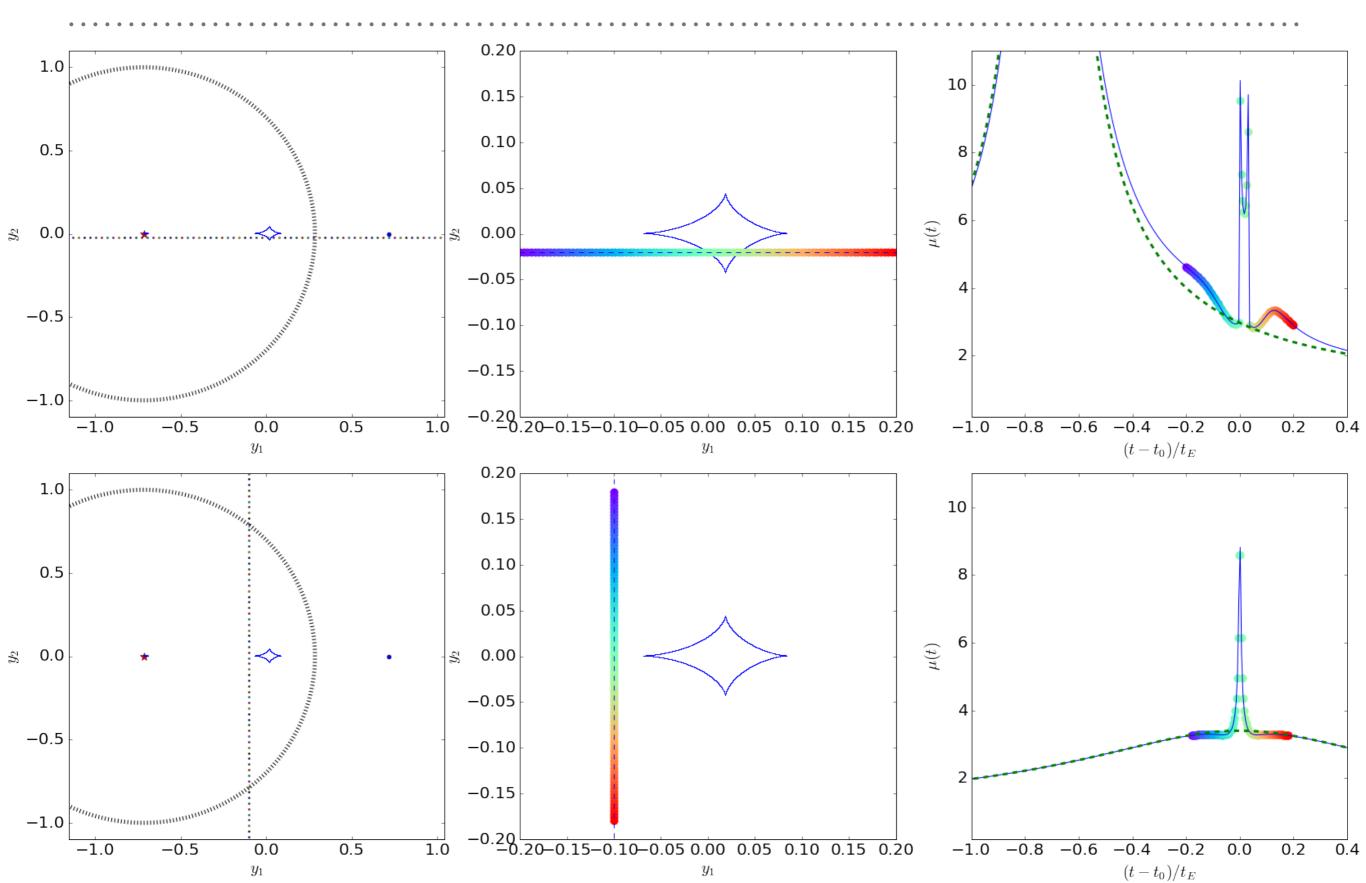


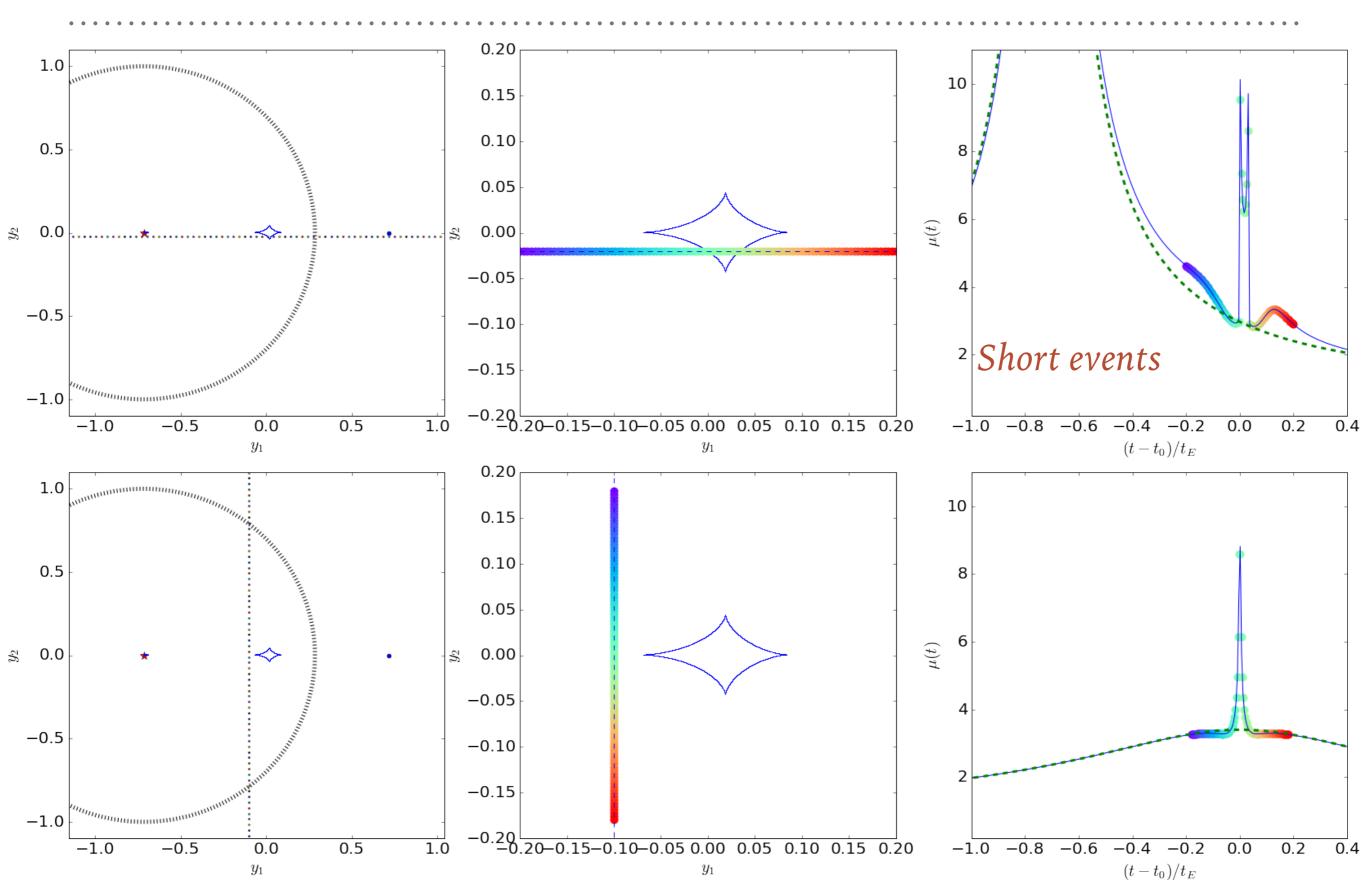


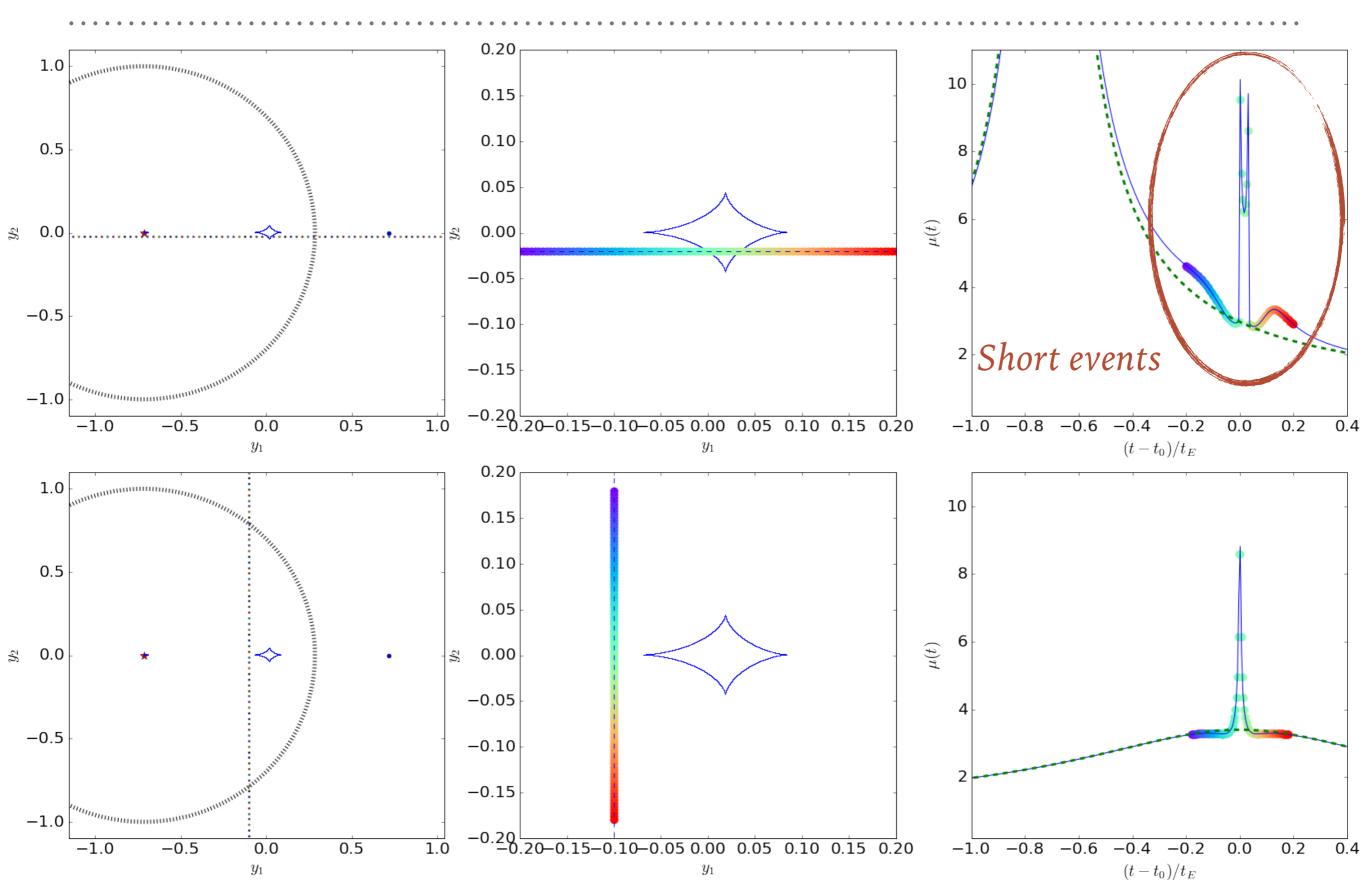




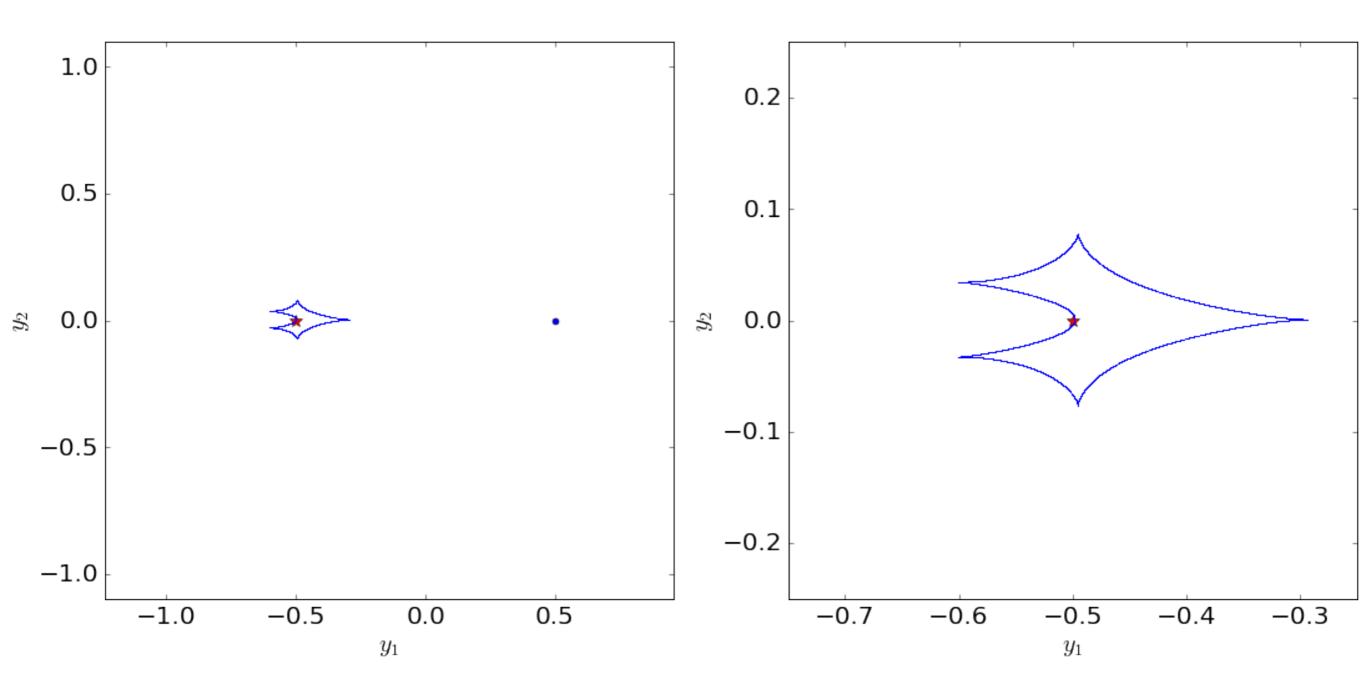




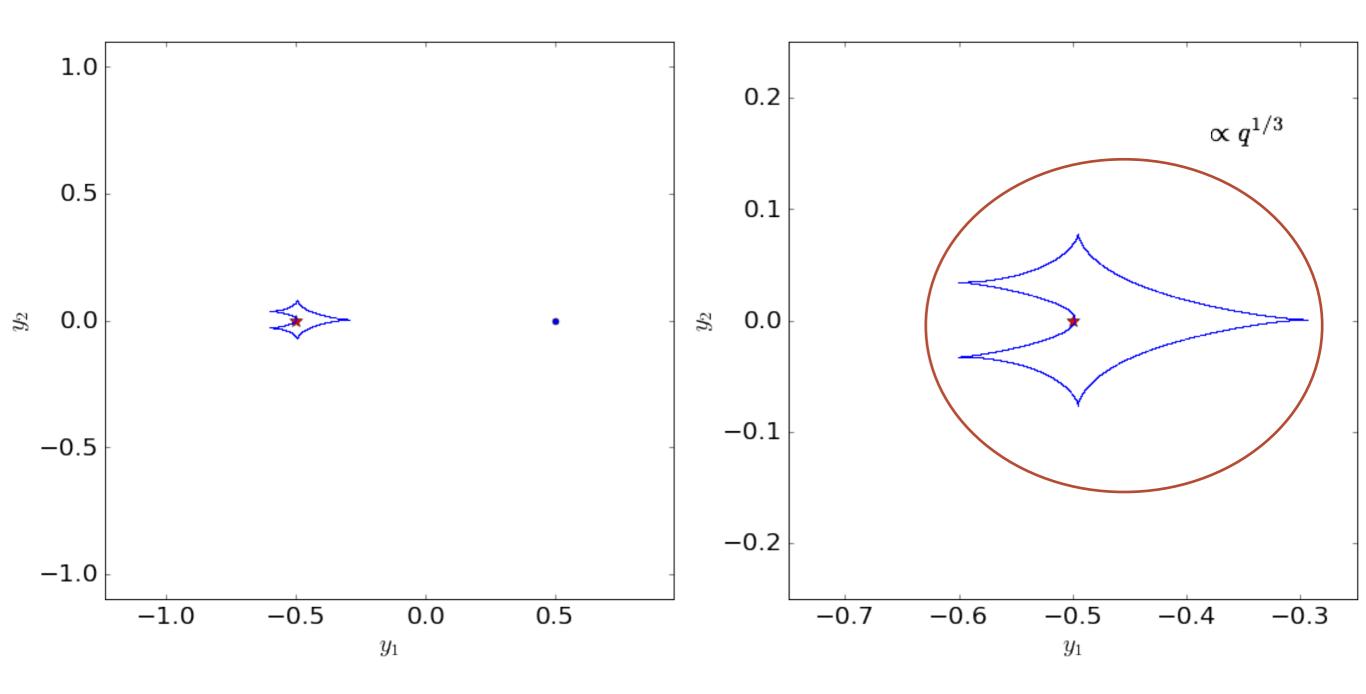


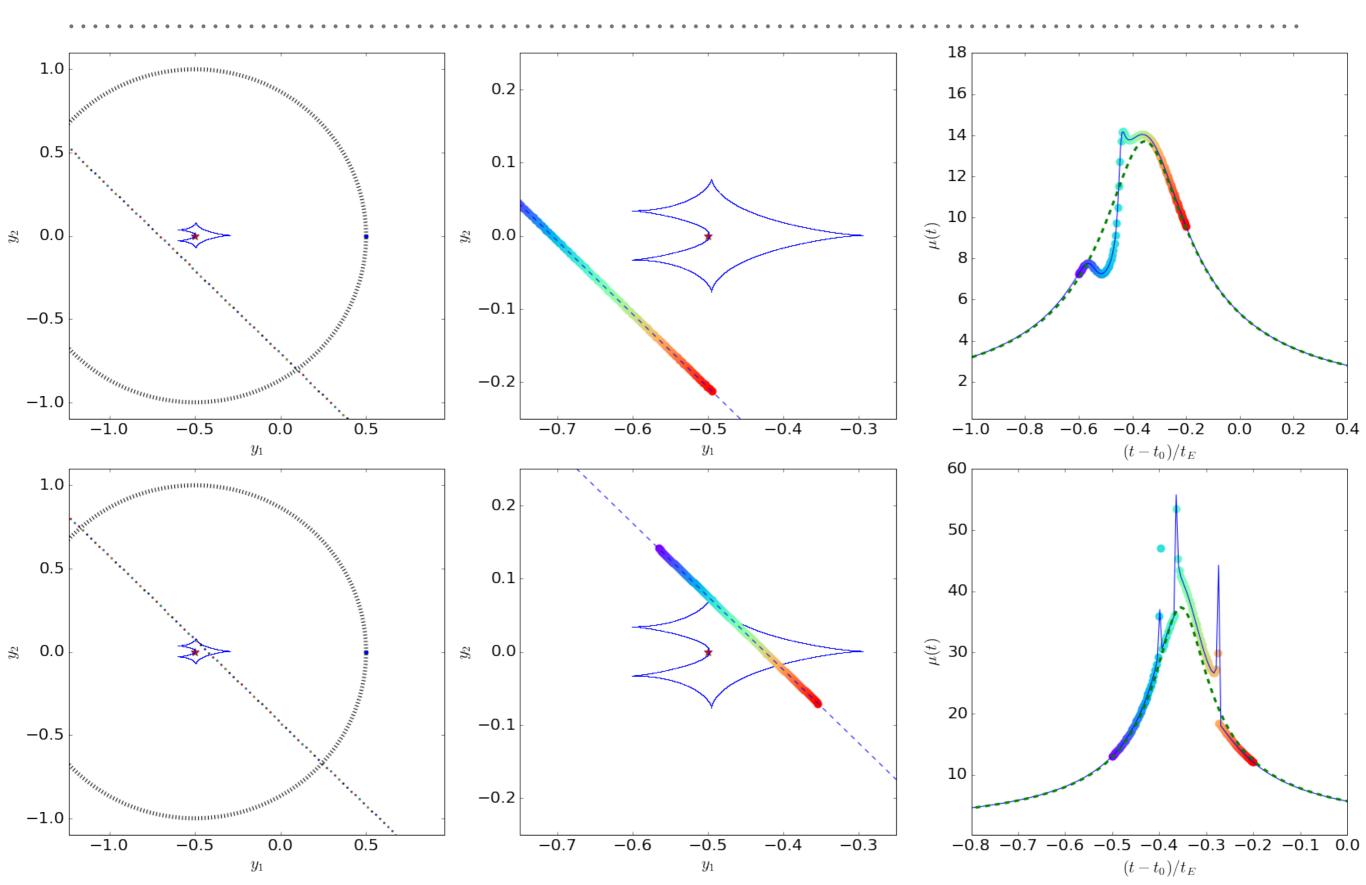


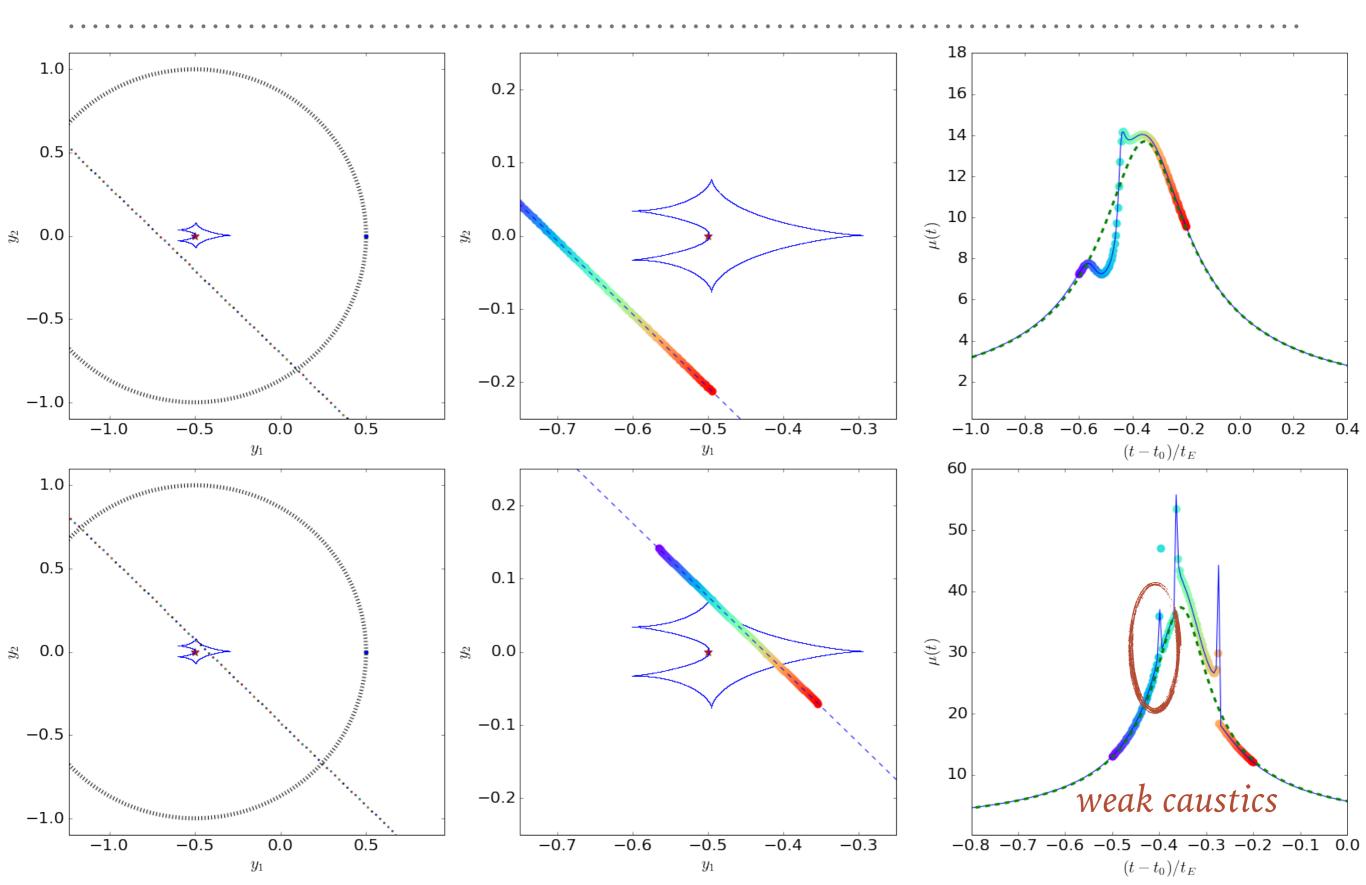
PLANETARY CAUSTICS IN INTERMEDIATE TOPOLOGIES

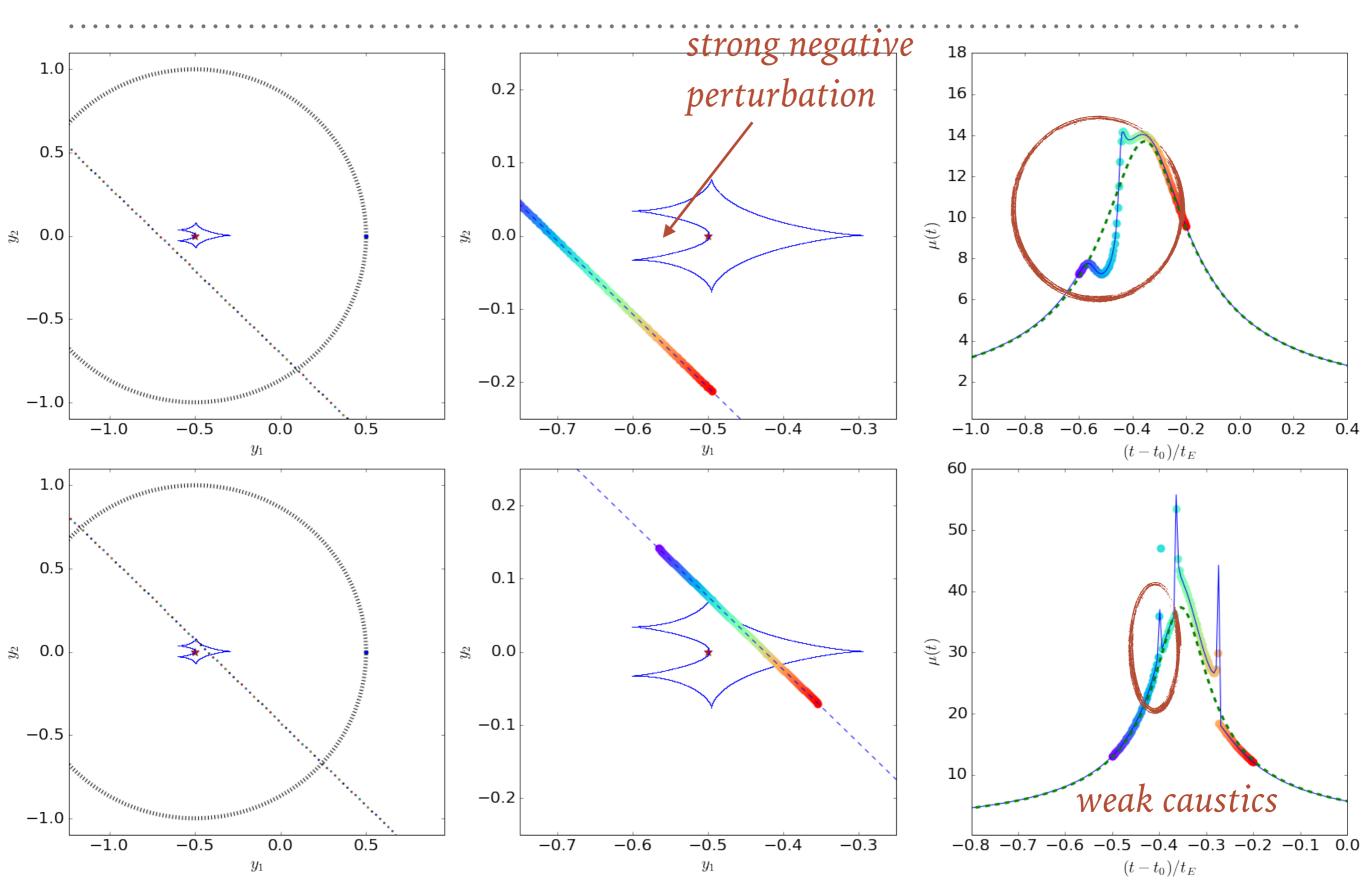


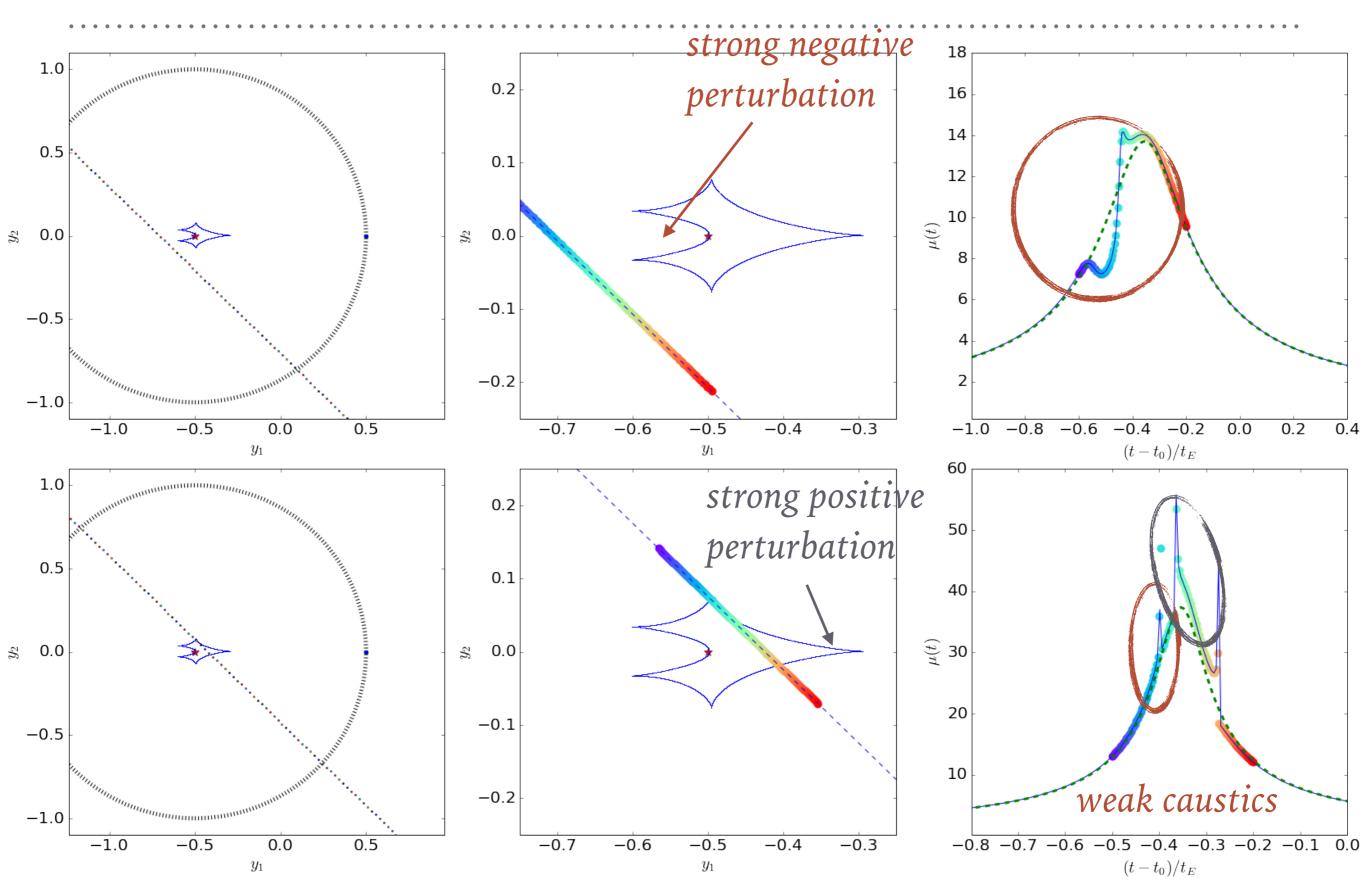
PLANETARY CAUSTICS IN INTERMEDIATE TOPOLOGIES









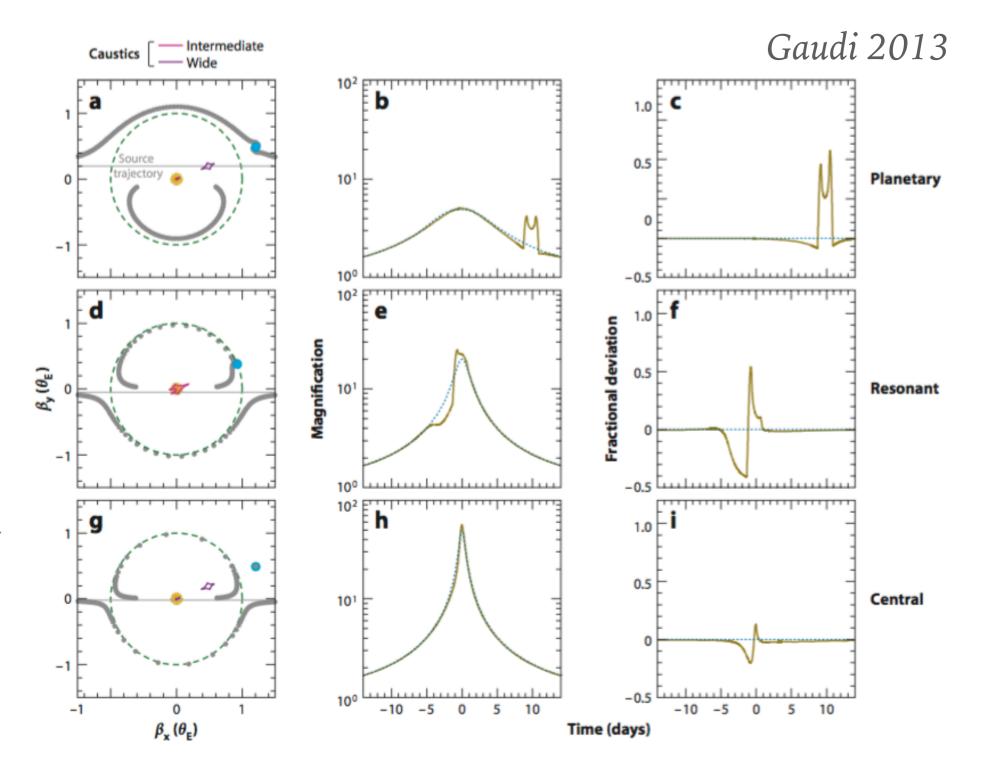


TO SUMMARIZE

- different caustic topologies give rise to different kind of perturbations on the light curves
- > planets can be detected in only a few qualitatively different ways:
 - At relatively low magnification of the primary, if the source crosses the planetary caustics from close or wide planets
 - near the peak of the light curve, if the source has a small impact parameter, in both cases of wide and close planets
 - at modest to high-magnification, through the perturbations from the resonant caustic.
 - in the case of free-floating planets, as single, short time-scale events.

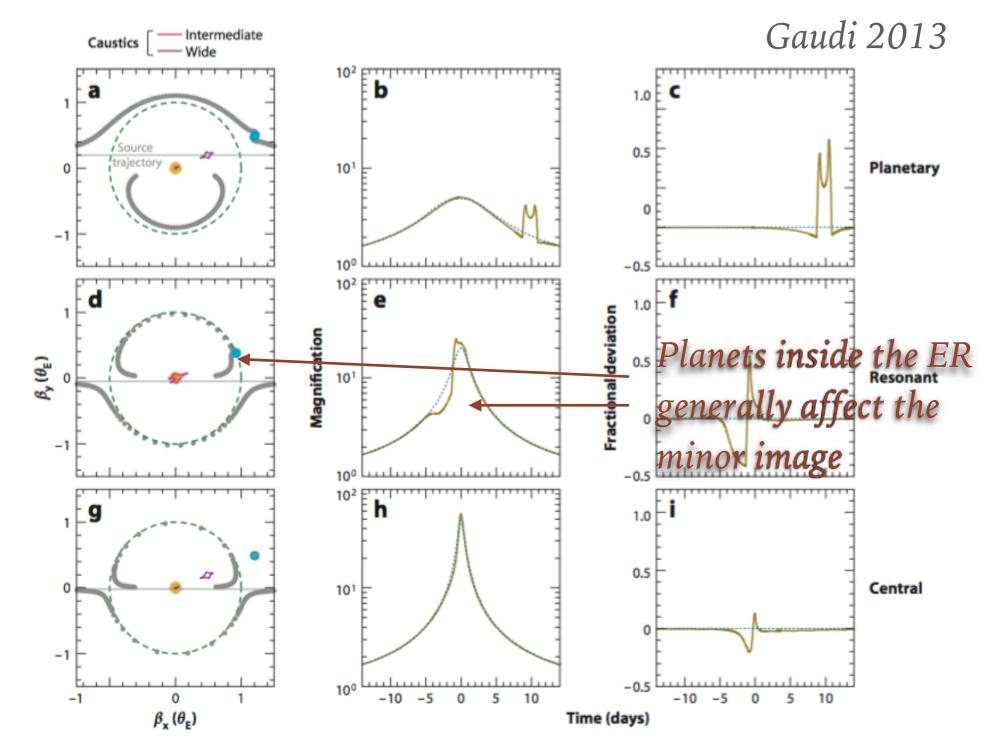
► there is also an astrometric perturbation...

The planet can be detected when it perturbs one of the two images of the source!



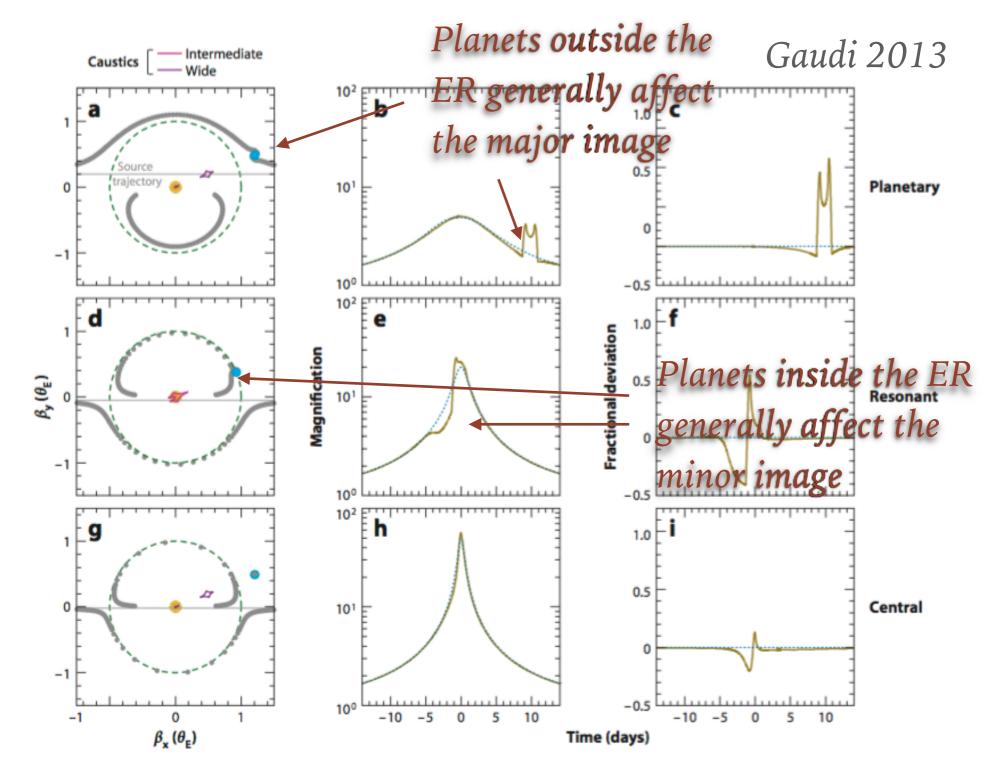
► there is also an astrometric perturbation...

The planet can be detected when it perturbs one of the two images of the source!



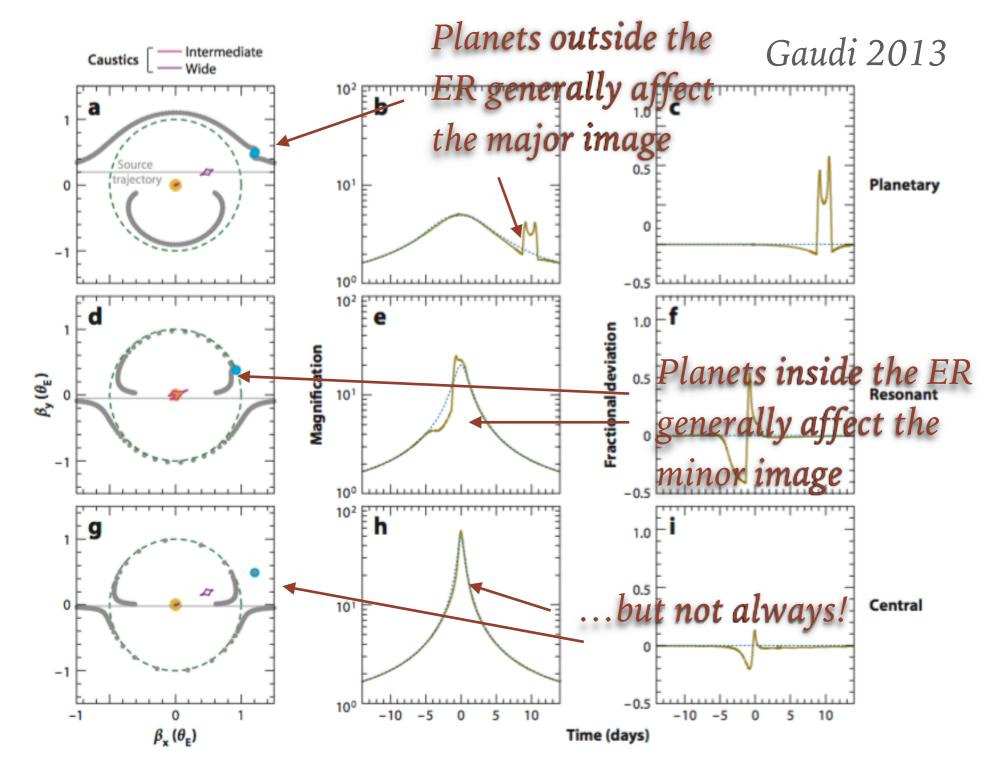
► there is also an astrometric perturbation...

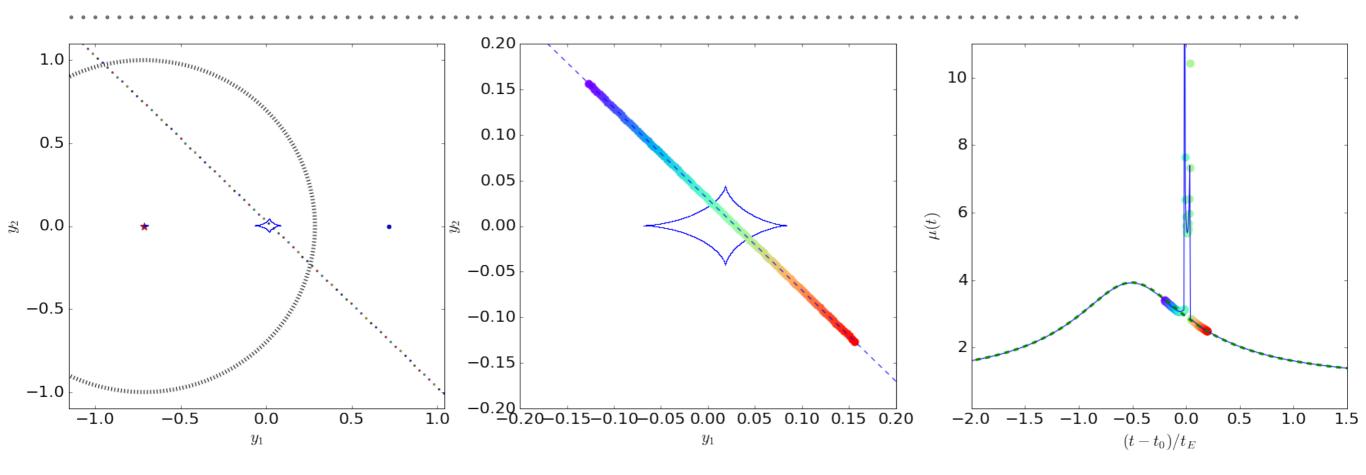
The planet can be detected when it perturbs one of the two images of the source!



► there is also an astrometric perturbation...

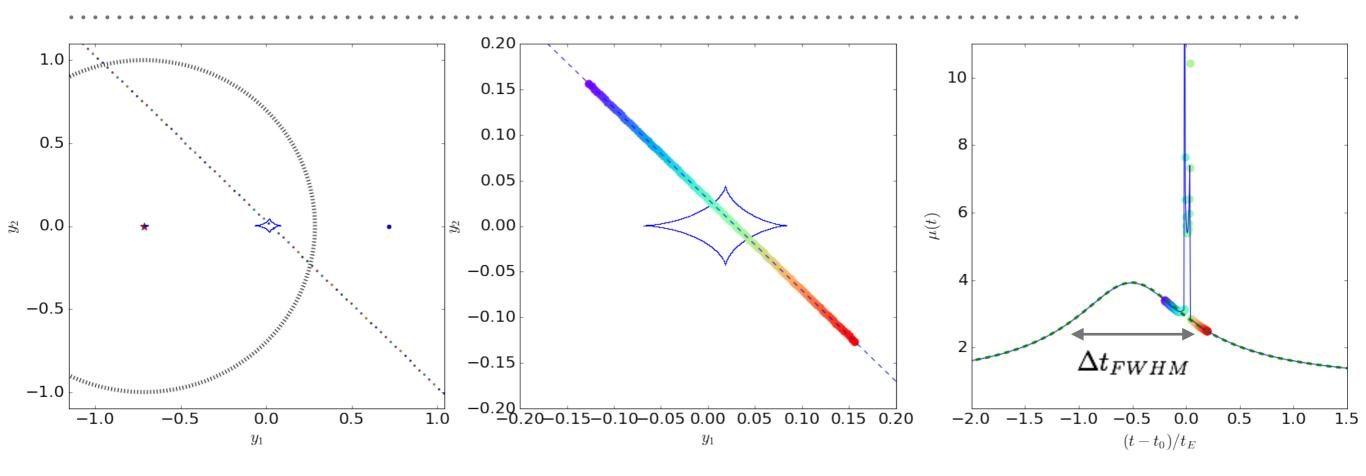
The planet can be detected when it perturbs one of the two images of the source!



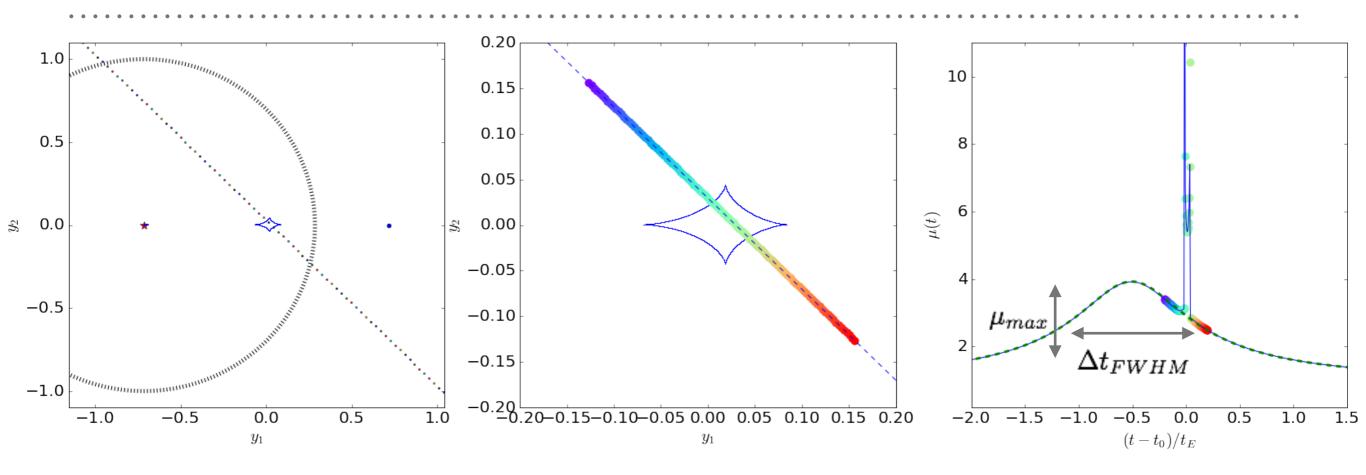


► primary event:

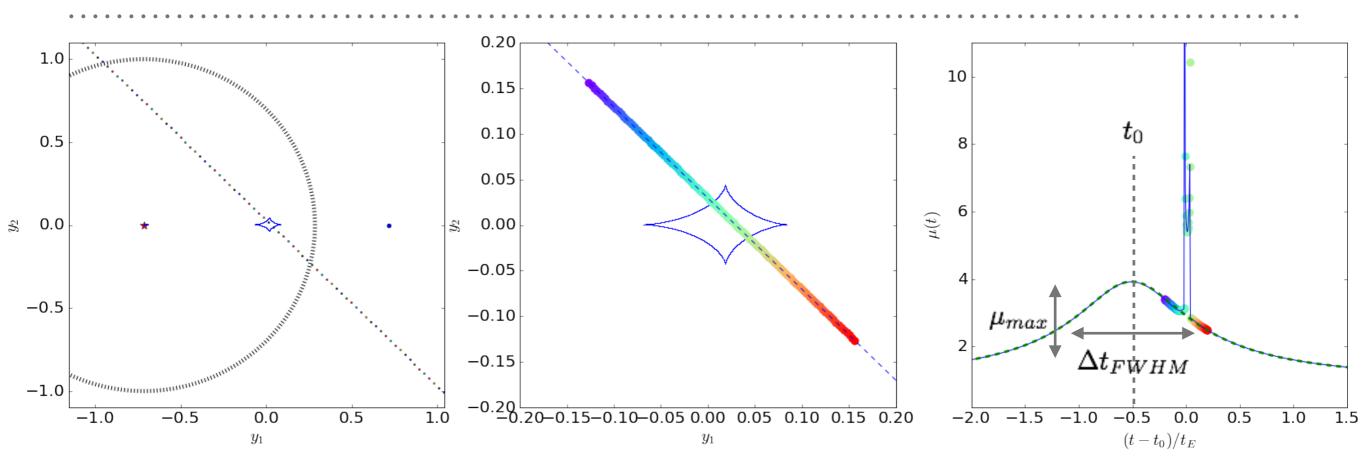
planetary perturbation:



- > primary event: Δt_{FWHM}
- planetary perturbation:

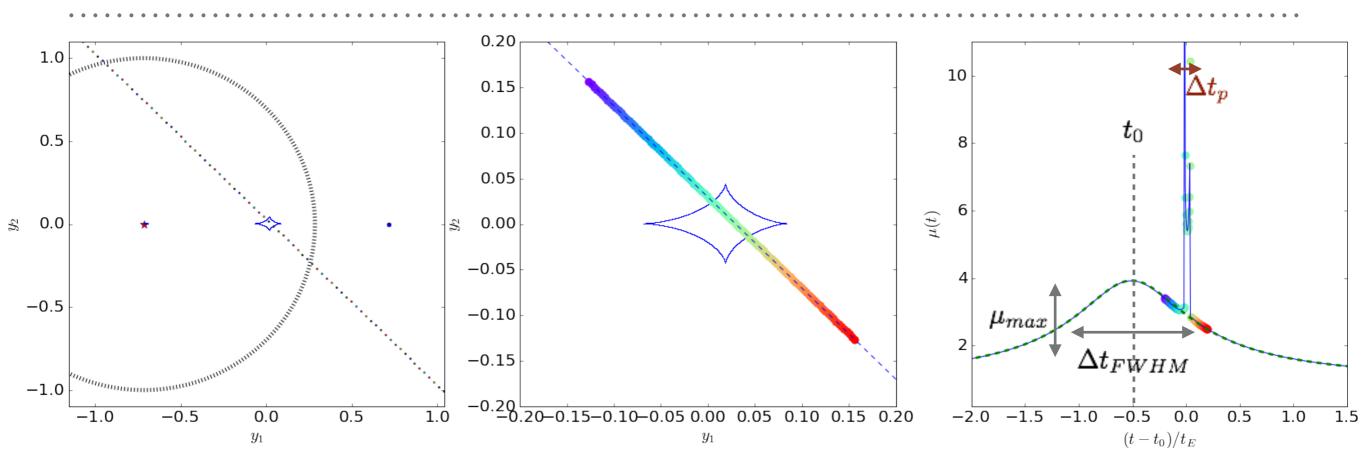


- > primary event: Δt_{FWHM} μ_{max}
- planetary perturbation:



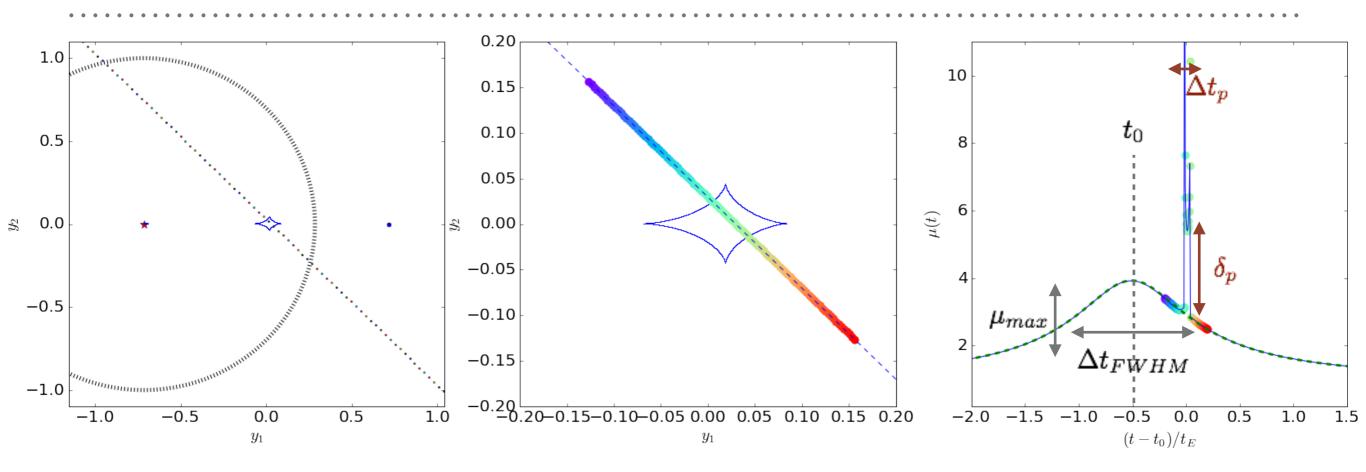
> primary event: Δt_{FWHM} μ_{max} t_0

planetary perturbation:



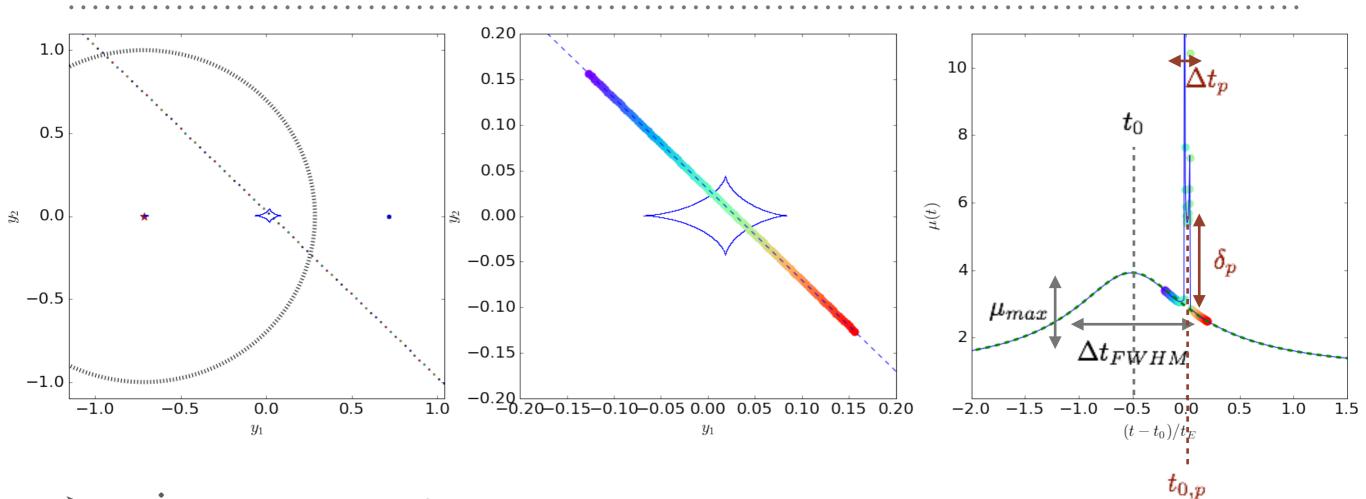
> primary event: Δt_{FWHM} μ_{max} t_0

> planetary perturbation: Δt_p

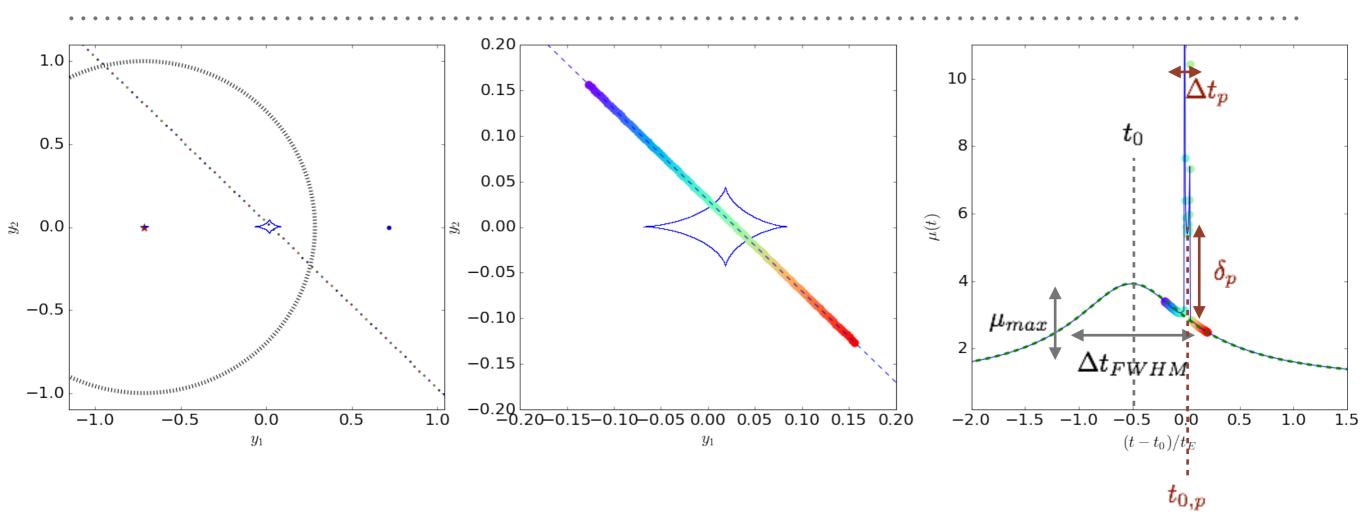


> primary event: Δt_{FWHM} μ_{max} t_0

> planetary perturbation: $\Delta t_p \delta_p$

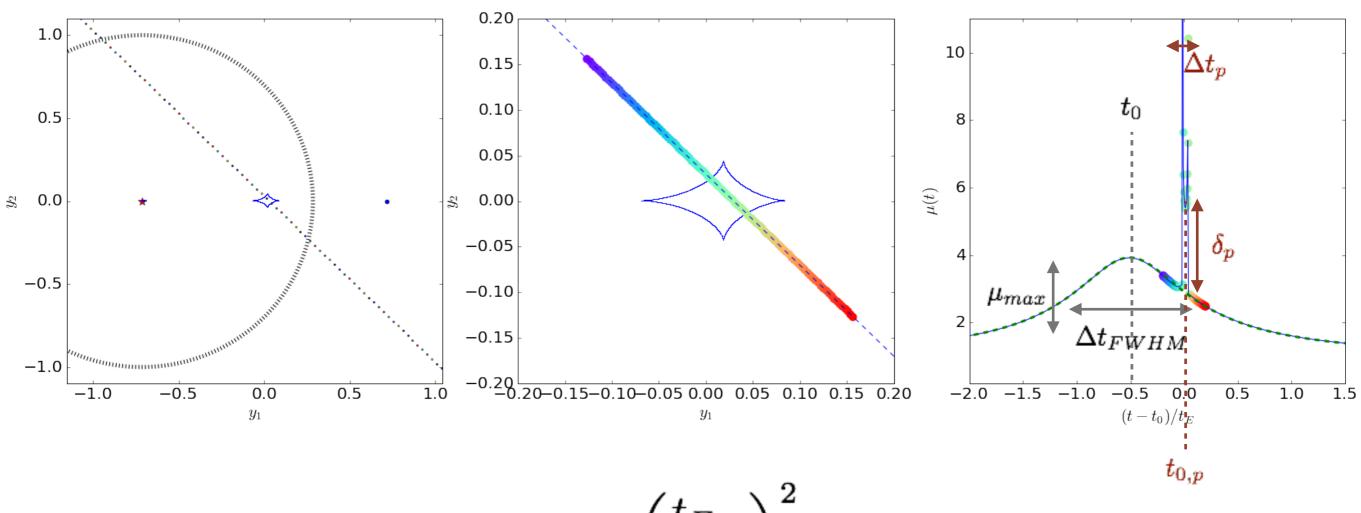


- > primary event: Δt_{FWHM} μ_{max} t_0
- > planetary perturbation: $\Delta t_p \ \delta_p \ t_{0,p}$

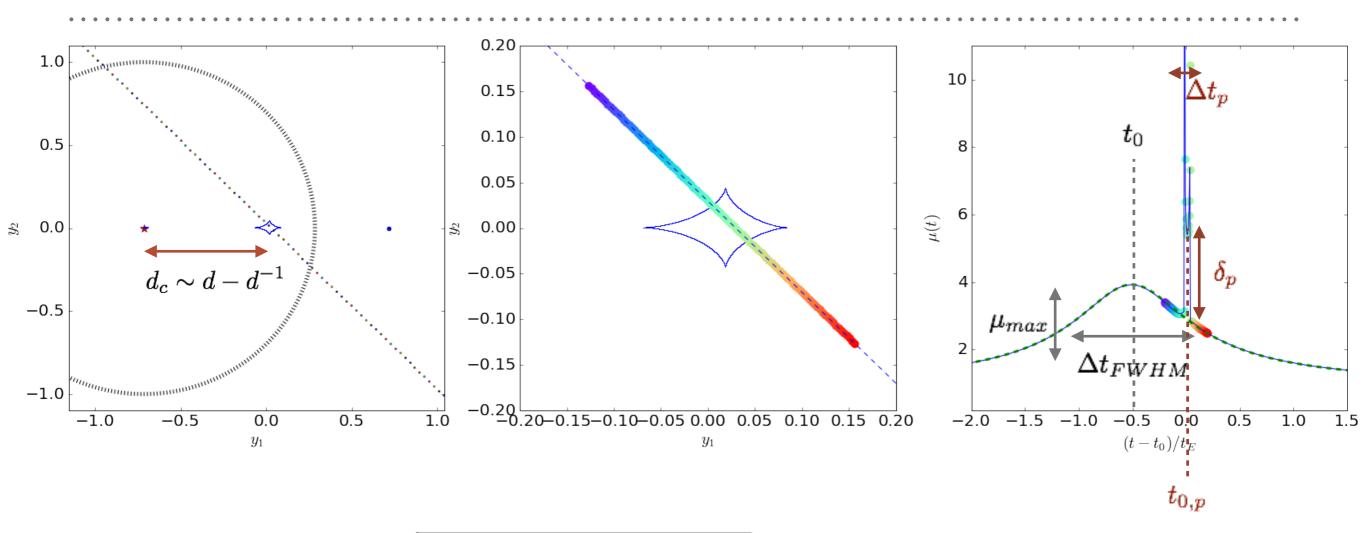


 $\Delta t_{FWHM_{,}} \mu_{max_{,}} t_{0} \implies \mu(y) = \frac{y^{2} + 2}{y\sqrt{y^{2} + 4}} \quad y(t) = \sqrt{y_{0}^{2} + \left(\frac{t - t_{0}}{t_{E}}\right)^{2}}$

 $\Rightarrow y_0 t_E$



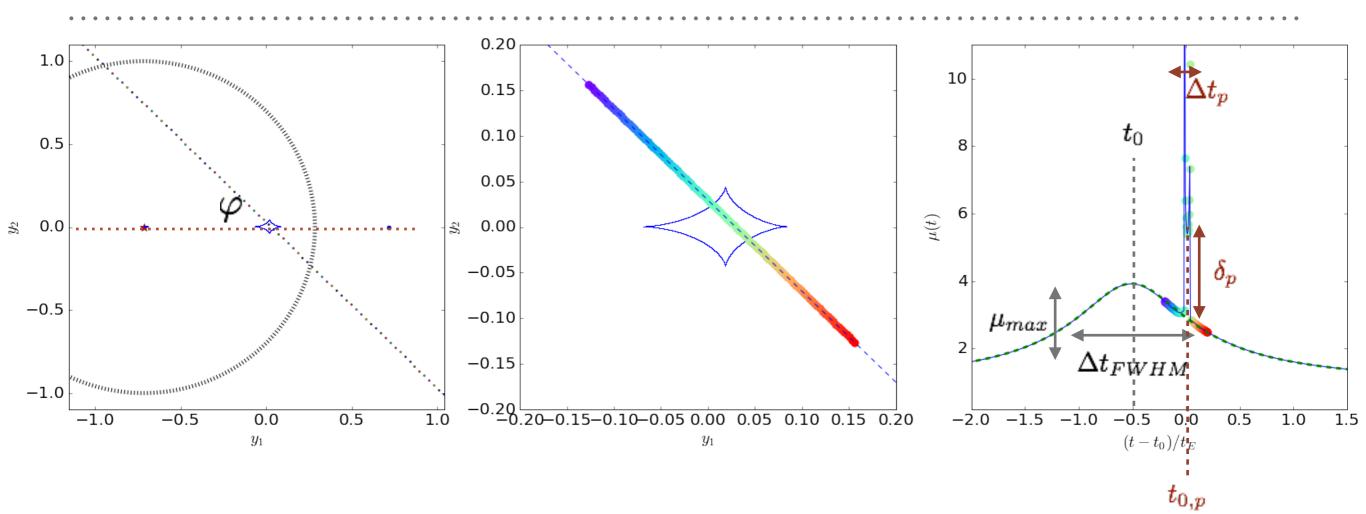
$$\Delta t_p \sim t_{E,p} \Rightarrow t_E \Rightarrow q = \left(\frac{t_{E,p}}{t_E}\right)$$



$$\delta_{p_{j}} t_{0,p} \Rightarrow y_{p} = \sqrt{y_{0}^{2} + \left(\frac{t_{0,p} - t_{0}}{t_{E}}\right)^{2}}$$

$$\Rightarrow d_c \sim \frac{y_p \pm \sqrt{y_p^2 + 4}}{2} \Rightarrow d$$

up to the degeneracy in d



$$y_0, y_p \Rightarrow \varphi = \sin^{-1} \frac{y_0}{y_p}$$

ADVANTAGES OF USING MICROLENSING FOR PLANET SEARCHES

- > peak sensitivity beyond the snow line
- sensitivity to low-mass planets
- sensitivity to long period and free-floating planets
- sensitivity to a wide range of host stars over a wide range of galactocentric distances
- sensitivity to multiple planets