GRAVITATIONAL LENSING LECTURE 19

Docente: Massimo Meneghetti AA 2015-2016

FROM SIE TO EPL

(SEE TESSORE \& METCALF, 2015)

- Modifications of the SIE to change the slope of the density profile are discussed in Tessore \& Metcalf (2015)
- Elliptical Power-Law lenses are difficult to treat analytically.
> The usage of numerical techniques is mandatory
> Here, we discuss some properties only qualitatively

FROM SIE TO EPL

(SEE TESSORE \& METCALF, 2015)

$$
\begin{gathered}
\kappa(x)=\frac{3-n}{2} x^{1-n} \\
x=\sqrt{f^{2} x_{1}^{2}+x_{2}^{2}}
\end{gathered}
$$

$$
n=2.75
$$

$$
f=0.8
$$

> Calculations can be better done using complex notation (e.g. Bourassa \& Kantowski, 1975)
> The complex deflection angle involves the Gauss Hypergeometric Function:

$$
\alpha(x, \varphi)=\frac{2}{1+f} x^{2-n} \mathrm{e}^{i \varphi}{ }_{2} F_{1}\left(1, \frac{n-1}{2} ; 2-\frac{n-1}{2} ;-\frac{1-f}{1+f} \mathrm{e}^{2 i \varphi}\right)
$$

> The potential can be found to be:

$$
\psi\left(x_{1}, x_{2}\right)=\frac{x_{1} \alpha_{1}+x_{2} \alpha_{2}}{3-n}
$$

> Similarly, other properties such as the $f=0.2$ shear can be derived easily from the deflection angle.

FROM SIE TO EPL
(SEE TESSORE \& METCALF, 20I5)

$f=0.8$

FROM SIE TO NIE

(SEE KOVNER, BARTELMANN \& SCHNEIDER, 1994)
Introducing a core, the singularity is removed, thus the lens looses the CUT, turning it into a regular CAUSTIC.

When this caustic exists, it corresponds to a CRITICAL LINE on the lens plane.
$\kappa(b)=\frac{\sqrt{f}}{2 \sqrt{b^{2}+b_{\mathrm{c}}^{2}}}$

caustics

FROM SIE TO NIE

(SEE KOVNER, BARTELMANN \& SCHNEIDER, 1994)

FROM SIE TO NIE

(SEE KOVNER, BARTELMANN \& SCHNEIDER, 1994)

FROM SIE TO NIE

(SEE KOVNER, BARTELMANN \& SCHNEIDER, 1994)

MULTIPLE IMAGES IN CORED LENSES

MS2I37

MS2I37

A6|I

