GRAVITATIONAL LENSING LECTURE 3

Docente: Massimo Meneghetti AA 2015-2016

CONTENTS

> Lensing potential
> Lens mapping (first order)
$>$ Distortion and magnification

LENSING POTENTIAL

$$
\hat{\vec{\alpha}}=\frac{2}{c^{2}} \int_{-\infty}^{+\infty} \vec{\nabla}_{\perp} \Phi d z
$$

This formula tells us that the deflection is caused by the projection of the Newtonian gravitational potential on the lens plane.
$\hat{\Psi}(\vec{\theta})=\frac{D_{\mathrm{LS}}}{D_{\mathrm{L}} D_{\mathrm{S}}} \frac{2}{c^{2}} \int \Phi\left(D_{\mathrm{L}} \vec{\theta}, z\right) \mathrm{d} z \quad$ We introduce the effective lensing potential
the lensing potential is the projection of the $3 D$ potential

2
the lensing potential scales with distances

OTHER PROPERTIES OF THE LENSING POTENTIAL

$\vec{\nabla}_{\theta} \hat{\Psi}(\vec{\theta})=\vec{\alpha}(\vec{\theta})$
The deflection angle is the gradient of the lensing potential
$\triangle_{\theta} \Psi(\vec{\theta})=2 \kappa(\vec{\theta})$
The laplacian of the lensing potential is twice the convergence

ADIMENSIONAL NOTATION

$$
\begin{array}{cc}
\vec{\nabla}_{\theta} \hat{\Psi}(\vec{\theta})=\vec{\alpha}(\vec{\theta}) & \vec{\nabla}_{x} \Psi(\vec{x})=\vec{\alpha}(\vec{x}) \\
\vec{\nabla}_{x}=\frac{\xi_{0}}{D_{\mathrm{L}}} \vec{\nabla}_{\theta} & \vec{\nabla}_{x} \hat{\Psi}=\frac{\xi_{0}}{D_{\mathrm{L}}} \vec{\nabla}_{\theta} \hat{\Psi}=\frac{\xi_{0}}{D_{\mathrm{L}}} \vec{\alpha} \\
\frac{D_{\mathrm{L}}^{2}}{\xi_{0}^{2}} \vec{\nabla}_{x} \hat{\Psi}=\frac{D_{\mathrm{L}}}{\xi_{0}} \vec{\alpha} & \Psi=\frac{D_{\mathrm{L}}^{2}}{\xi_{0}^{2}} \hat{\Psi}
\end{array}
$$

ADIMENSIONAL NOTATION

$$
\begin{array}{cl}
\triangle_{\theta} \Psi(\vec{\theta})=2 \kappa(\vec{\theta}) & \Delta_{x} \Psi(\vec{x})=2 \kappa(\vec{x}) \\
\kappa(\theta)=\frac{1}{2} \Delta_{\theta} \hat{\Psi}=\frac{1}{2} \frac{\xi_{0}^{2}}{D_{\mathrm{L}}^{2}} \Delta_{\theta} \Psi & \Delta_{\theta}=D_{\mathrm{L}}^{2} \Delta_{\xi}=\frac{D_{\mathrm{L}}^{2}}{\xi_{0}^{2}} \Delta_{x}
\end{array}
$$

ADIMENSIONAL NOTATION

From

$$
\overrightarrow{\hat{\alpha}}(\vec{\xi})=\frac{4 G}{c^{2}} \int \frac{\left(\vec{\xi}-\vec{\xi}^{\prime}\right) \Sigma\left(\overrightarrow{\xi^{\prime}}\right)}{\left|\vec{\xi}-\vec{\xi}^{\prime}\right|^{2}} \mathrm{~d}^{2} \xi^{\prime}
$$

we obtain

$$
\vec{\alpha}(\vec{x})=\frac{1}{\pi} \int_{\mathbf{R}^{2}} \mathrm{~d}^{2} x^{\prime} \kappa\left(\vec{x}^{\prime}\right) \frac{\vec{x}-\vec{x}^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|}
$$

Using

$$
\begin{gathered}
\vec{\nabla}_{x} \Psi(\vec{x})=\vec{\alpha}(\vec{x}) \\
\Psi(\vec{x})=\frac{1}{\pi} \int_{\mathbf{R}^{2}} \kappa\left(\vec{x}^{\prime}\right) \ln \left|\vec{x}-\vec{x}^{\prime}\right| \mathrm{d}^{2} x^{\prime}
\end{gathered}
$$

ADIMENSIONAL NOTATION

From

$$
\overrightarrow{\hat{\alpha}}(\vec{\xi})=\frac{4 G}{c^{2}} \int \frac{\left(\vec{\xi}-\overrightarrow{\xi^{\prime}}\right) \Sigma\left(\overrightarrow{\xi^{\prime}}\right)}{\left|\vec{\xi}-\overrightarrow{\xi^{\prime}}\right|^{2}} \mathrm{~d}^{2} \xi^{\prime}
$$

we obtain

$$
\vec{\alpha}(\vec{x})=\frac{1}{\pi} \int_{\mathbf{R}^{2}} \mathrm{~d}^{2} x^{\prime} \kappa\left(\vec{x}^{\prime}\right) \frac{\vec{x}-\vec{x}^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|}
$$

Using

$$
\vec{\nabla}_{x} \Psi(\vec{x})=\vec{\alpha}(\vec{x})
$$

Convolution kernels

$$
\Psi(\vec{x})=\frac{1}{\pi} \int_{\mathbf{R}^{2}} \kappa\left(\vec{x}^{\prime}\right) \ln \left|\vec{x}-\vec{x}^{\prime}\right| \mathrm{d}^{2} x^{\prime}
$$

LENS MAPPING (FIRST ORDER)

- Very simple equation to link points on the lens and on the source planes:

$$
\vec{\beta}=\vec{\theta}-\frac{D_{L S}}{D_{S}} \hat{\vec{\alpha}}(\vec{\theta})=\vec{\theta}-\vec{\alpha}(\vec{\theta})
$$

- Assuming that the d.a. does not vary significantly over the scale $d \theta$:

$$
\left(\vec{\beta}^{\prime}-\vec{\beta}\right)=\left(I-\frac{d \vec{\alpha}}{d \vec{\theta}}\right)\left(\vec{\theta}^{\prime}-\vec{\theta}\right)=A\left(\vec{\theta}^{\prime}-\vec{\theta}\right)
$$

LENS MAPPING (FIRST ORDER)

$$
A \equiv \frac{\partial \vec{y}}{\partial \vec{x}}=\left(\delta_{i j}-\frac{\partial \alpha_{i}(\vec{x})}{\partial x_{j}}\right)=\left(\delta_{i j}-\frac{\partial^{2} \Psi(\vec{x})}{\partial x_{i} \partial x_{j}}\right)
$$

Symmetric second rank tensor describing the first order mapping between lens and source planes.

This tensor can be written as the sum of an isotropic part, proportional to its trace, and an anisotropic traceless part.

$$
A_{i s o, i, j}=\frac{1}{2} \operatorname{Tr} A \delta_{i, j}
$$

$$
A_{a n i s o, i, j}=A_{i, j}-\frac{1}{2} \operatorname{Tr} A \delta_{i, j}
$$

ANISOTROPIC PART

$$
\begin{gathered}
A_{\text {aniso }, i, j}=A_{i, j}-\frac{1}{2} \operatorname{Tr} A \delta_{i, j} \\
\left(A-\frac{1}{2} \operatorname{tr} A \cdot I\right)_{i j}= \\
=\delta_{i j}-\Psi_{i j}-\frac{1}{2}\left(1-\Psi_{11}+1-\Psi_{22}\right) \delta_{i j} \\
=-\Psi_{i j}+\frac{1}{2}\left(\Psi_{11}+\Psi_{22}\right) \delta_{i j} \\
=\left(\begin{array}{cc}
-\frac{1}{2}\left(\Psi_{11}-\Psi_{22}\right) & -\Psi_{12} \\
-\Psi_{12} & \frac{1}{2}\left(\Psi_{11}-\Psi_{22}\right)
\end{array}\right)
\end{gathered}
$$

$$
\gamma_{1}=\frac{1}{2}\left(\Psi_{11}-\Psi_{22}\right)
$$

$$
\gamma_{2}=-\Psi_{12}=-\Psi_{21}
$$

$$
\left(\begin{array}{cc}
\gamma_{1} & \gamma_{2} \\
\gamma_{2} & -\gamma_{1}
\end{array}\right)=\gamma\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)
$$

Symmetric, trace-less tensor

ISOTROPIC PART

$$
A_{i s o, i, j}=\frac{1}{2} \operatorname{Tr} A \delta_{i, j}
$$

$$
\begin{aligned}
\frac{1}{2} \operatorname{tr} A \cdot I & =\left[1-\frac{1}{2}\left(\Psi_{11}+\Psi_{22}\right)\right] \delta_{i j} \\
& =\left(1-\frac{1}{2} \Delta \Psi\right) \delta_{i j}=(1-\kappa) \delta_{i j}
\end{aligned}
$$

Remember: $\quad \triangle_{\theta} \Psi(\vec{\theta})=2 \kappa(\vec{\theta})$

LENSING JACOBIAN

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
1-\kappa-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & 1-\kappa+\gamma_{1}
\end{array}\right) \\
& =(1-\kappa)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\gamma\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)
\end{aligned}
$$

Lens mapping at first order can be seen as a linear application, distorting areas.

Distortion directions are given by the eigenvectors of A.

Distortion amplitudes in these directions are given by the eigenvalues.

LENSING JACOBIAN

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
1-\kappa-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & 1-\kappa+\gamma_{1}
\end{array}\right) \\
& =(1-\kappa)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\gamma\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)
\end{aligned}
$$

Lens mapping at first order can be seen as a linear application, distorting areas.

Distortion directions are given by the eigenvectors of A.

Distortion amplitudes in these directions are given by the eigenvalues.

EXAMPLE: FIRST ORDER DISTORTION OF A CIRCULAR SOURCE

$$
\beta_{1}^{2}+\beta_{2}^{2}=\beta^{2}
$$

In the reference frame where A is diagonal:

$$
\begin{gathered}
\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{cc}
1-\kappa-\gamma & 0 \\
0 & 1-\kappa+\gamma
\end{array}\right)\binom{\theta_{1}}{\theta_{2}} \\
\beta_{1}=(1-\kappa-\gamma) \theta_{1} \\
\beta_{2}=(1-\kappa+\gamma) \theta_{2} \\
\beta^{2}=\beta_{1}^{2}+\beta_{2}^{2}=(1-\kappa-\gamma)^{2} \theta_{1}^{2}+(1-\kappa+\gamma)^{2} \theta_{2}^{2}
\end{gathered}
$$

This is the equation of an ellipse with semi-axes:

$$
a=\frac{\beta}{1-\kappa-\gamma} \quad b=\frac{\beta}{1-\kappa+\gamma}
$$

