GRAVITATIONAL LENSING LECTURE 4

Docente: Massimo Meneghetti AA 2015-2016

CONTENTS

> Distortion and magnification (continuation)

- Second order lensing: flexion
> Time delays

EXAMPLE: FIRST ORDER DISTORTION OF A CIRCULAR SOURCE

$$
\beta_{1}^{2}+\beta_{2}^{2}=\beta^{2}
$$

In the reference frame where A is diagonal:

$$
\begin{gathered}
\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{cc}
1-\kappa-\gamma & 0 \\
0 & 1-\kappa+\gamma
\end{array}\right)\binom{\theta_{1}}{\theta_{2}} \\
\beta_{1}=(1-\kappa-\gamma) \theta_{1} \\
\beta_{2}=(1-\kappa+\gamma) \theta_{2} \\
\beta^{2}=\beta_{1}^{2}+\beta_{2}^{2}=(1-\kappa-\gamma)^{2} \theta_{1}^{2}+(1-\kappa+\gamma)^{2} \theta_{2}^{2}
\end{gathered}
$$

This is the equation of an ellipse with semi-axes:

$$
a=\frac{\beta}{1-\kappa-\gamma} \quad b=\frac{\beta}{1-\kappa+\gamma}
$$

EXAMPLE: FIRST ORDER DISTORTION OF A CIRCULAR SOURCE

convergence: responsible for isotropic expansion or contraction shear: responsible for anisotropic distortion

Ellipticity: $\quad e=\frac{a-b}{a+b}=\frac{\gamma}{1-\kappa}=g$

EXAMPLE: FIRST ORDER DISTORTION OF A CIRCULAR SOURCE

What is the orientation of the ellipse? Let's find the eigenvectors corresponding to the eigenvalue λ_{t}

$$
E_{\lambda_{t}}=N\left(A-\lambda_{t} I\right)=N\left(\begin{array}{cc}
\gamma-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & \gamma+\gamma_{1}
\end{array}\right)
$$

Result: $\vec{v}=\left(v_{1}, v_{2}\right)=|v|\left(\cos \phi^{\prime}, \sin \phi^{\prime}\right) \quad$ with $\quad v_{1}=\frac{\gamma_{2}}{\gamma-\gamma_{1}} v_{2}$

After some math: $\quad \cos \phi^{\prime}= \pm \cos \phi$

$$
\begin{aligned}
& \phi^{\prime}=\phi \\
& \phi^{\prime}=\phi+\pi
\end{aligned}
$$

SHEAR DISTORTIONS

MAGNIFICATION

Kneib \& Natarajan (2012)

$$
\mu=\frac{d I}{d S}=\frac{\delta \theta^{2}}{\delta \beta^{2}}=\operatorname{det} A^{-1}
$$

CONSERVATION OF SURFACE BRIGHTNESS

The source surface brightness is

$$
I_{\nu}=\frac{d E}{d t d A d \Omega d \nu}
$$

In phase space, the radiation emitted is characterized by the density

$$
f(\vec{x}, \vec{p}, t)=\frac{d N}{d^{3} x d^{3} p}
$$

In absence of photon creations or absorptions, f is conserved (Liouville theorem)

$$
\begin{aligned}
& d N=\frac{d E}{h \nu}=\frac{d E}{c p} \\
& d^{3} x=c d t d A \\
& d^{3} \vec{p}=p^{2} d p d \Omega
\end{aligned}
$$

$$
f(\vec{x}, \vec{p}, t)=\frac{d N}{d^{3} x d^{3} p}=\frac{d E}{h c p^{3} d A d t d \nu d \Omega}=\frac{I_{\nu}}{h c p^{3}}
$$

Since GL does not involve creation or absorption of photons, neither it changes the photon momenta (achromatic!), surface brightness is conserved!

MAGNIFICATION

Kneib \& Natarajan (2012)

$$
F_{\nu}=\int_{I} I_{\nu}(\vec{\theta}) d^{2} \theta=\int_{S} I_{\nu}^{S}[\vec{\beta}(\vec{\theta})] \mu d^{2} \beta
$$

Lensing changes the amount of photons (flux) we receive from the source by changing the solid angle the source subtends

MAGNIFICATION

Kneib \& Natarajan (2012)

$$
F_{\nu}=\int_{I} I_{\nu}(\vec{\theta}) d^{2} \theta=\int_{S} I_{\nu}^{S}[\vec{\beta}(\vec{\theta})] \mu d^{2} \beta
$$

Lensing changes the amount of photons (flux) we receive from the source by changing the solid angle the source subtends

MAGNIFICATION

Kneib \& Natarajan (2012)

$$
F_{\nu}=\int_{I} I_{\nu}(\vec{\theta}) d^{2} \theta=\int_{S} I_{\nu}^{S}[\vec{\beta}(\vec{\theta})] \mu d^{2} \beta
$$

Lensing changes the amount of photons (flux) we receive from the source by changing the solid angle the source subtends

MAGNIFICATION

Kneib \& Natarajan (2012)

$$
\begin{gathered}
\mu=\frac{d I}{d S}=\frac{\delta \theta^{2}}{\delta \beta^{2}}=\operatorname{det} A^{-1} \\
F_{\nu}=\int_{I} I_{\nu}(\vec{\theta}) d^{2} \theta=\int_{S} I_{\nu}^{S}[\vec{\beta}(\vec{\theta})] \mu d^{2} \beta
\end{gathered}
$$

Lensing changes the amount of photons (flux) we receive from the source by changing the solid angle the source subtends

CRITICAL LINES AND CAUSTICS

Both convergence and shear are functions of position on the lens plane:
$\kappa=\kappa(\vec{\theta})$
$\gamma=\gamma(\vec{\theta})$
The determinant of the lensing Jacobian is
$\operatorname{det} A=(1-\kappa-\gamma)(1-\kappa+\gamma)=\mu^{-1}$
The critical lines are the lines where the eigenvalues of the Jacobian are zero:

$$
\begin{array}{ll}
(1-\kappa-\gamma)=0 & \text { tangential critical line } \\
(1-\kappa+\gamma)=0 & \text { radial critical line }
\end{array}
$$

Along these lines the magnification diverges!
Via the lens equations, they are mapped into the caustics...

SECOND ORDER LENS EQUATION

$$
\begin{gathered}
\beta_{i} \simeq \frac{\partial \beta_{i}}{\partial \theta_{j}} \theta_{j} \\
A_{i j}
\end{gathered}
$$

SECOND ORDER LENS EQUATION

$$
\beta_{i} \simeq \frac{\partial \beta_{i}}{\partial \theta_{j}} \theta_{j}+\frac{1}{2} \frac{\partial^{2} \beta_{i}}{\partial \theta_{j} \partial \theta_{k}} \theta_{j} \theta_{k}
$$

SECOND ORDER LENS EQUATION

$$
\beta_{i} \simeq \frac{\partial \beta_{i}}{\partial \theta_{j}} \theta_{j}+\frac{1}{2} \frac{\partial^{2} \beta_{i}}{\partial \theta_{j} \partial \theta_{k}} \theta_{j} \theta_{k}
$$

SECOND ORDER LENS EQUATION

$$
\beta_{i} \simeq \frac{\partial \beta_{i}}{\partial \theta_{j}} \theta_{j}+\frac{1}{2} \frac{\partial^{2} \beta_{i}}{\partial \theta_{j} \partial \theta_{k}} \theta_{j} \theta_{k}
$$

$A_{i j}$
$\frac{\partial A_{i j}}{\partial \theta_{k}}=D_{i j k}$

$$
D_{i j 1}=\left(\begin{array}{cc}
-2 \gamma_{1,1}-\gamma_{2,2} & -\gamma_{2,1} \\
-\gamma_{2,1} & -\gamma_{2,2}
\end{array}\right) \quad D_{i j 2}=\left(\begin{array}{cc}
-\gamma_{2,1} & -\gamma_{2,2} \\
-\gamma_{2,2} & 2 \gamma_{1,2}-\gamma_{2,1}
\end{array}\right)
$$

