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ABSTRACT
Linear regression is ubiquitous in astronomical analyses. I discuss a Bayesian hierarchical
modeling of data with heteroscedastic and possibly correlated measurement errors and intrin-
sic scatter. The method fully accounts for the time evolution of the scaling. The slope, the
normalization, and the intrinsic scatter of the relation can evolve with the redshift. The in-
trinsic distribution of the independent variable is approximated using a mixture of Gaussian
distributions whose mean and standard deviation depend on time. The method can address
scatter in the measured independent variable (a sort of Eddington bias), selection effects in
the response variable (Malmquist bias), and departure from linearity in form of a knee. I
tested the method and quantified the effect of not correcting the biases with toy models and
simulations. The R-package LIRA (LInear Regression in Astronomy) is made available for
performing the regression.
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1 INTRODUCTION

Astrophysics and statistics have an interwoven history (Feigelson
& Babu 2012). Linear regression is one of the most frequently used
statistical techniques in astronomical data analysis. There is an im-
pressive variety of methods to estimate functional relationships be-
tween variables.

Linear regression is kind of easy. We can draw a line which
nicely interpolates a distribution of points on a paper by eye. Con-
necting dots and forming a regular pattern is a game fro kids. Dif-
ficulties lie in refining the results and uncovering the quantity we
are really look for. As an example, the ordinary least square esti-
mator is elegant and powerful. Still, results may be meaningless if
we apply it out of its range of validity.

Most astronomical data analyses feature intrinsic scatter about
the regression line. Measurement errors can affect both the inde-
pendent and dependent variables. Errors may be heteroscedastic,
i.e., they differ, and possibly correlated. The intrinsic distribution
of the independent variables may be irregular or not uniform. The
independent variable may be hidden and we could measure just a
proxy of it. Selection effects can make the observed sample not
representative of the population we want to study.

These aspects influence regression results and can make the
use of some statistical estimators inappropriate. Many methods
have been proposed to tackle these effects (Akritas & Bershady
1996; Kelly 2007; Isobe et al. 1990; Hogg, Bovy & Lang 2010;
Feigelson & Babu 2012, , and references therein). Here, we are
mostly interested in methods assuming that the scatters, either the
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intrinsic scatter or the uncertainties in the measurement process,
are Gaussian. Generalized linear methods can tackle non-Gaussian
multivariate datasets (de Souza et al. 2015).

Some statistical papers had the great merit to clarify the in-
volved problematics to the astronomical community. Akritas &
Bershady (1996) proposed the BCES estimator (Bivariate Corre-
lated Errors and intrinsic Scatter) which accommodates intrinsic
scatter in addition to correlated, heteroscedastic measurement er-
rors on both variables by correcting the observed moments of the
data.

Kelly (2007) described a Bayesian method (MLINMIX) based
on the likelihood function of the measured data. The method can
account for measurement errors, intrinsic scatter, multiple indepen-
dent variables, non-detections, and selection effects in the indepen-
dent variable. Kelly (2007) emphasized that the underlying distri-
bution of covariates in a regression has to be modeled to get un-
biased regression parameters and he proposed to approximate the
intrinsic distribution of the independent variables as a mixture of
Gaussian functions. This modeling is flexible when estimating the
distribution of the true values of the independent variable and it is
robust against model mispecification.

Recently, Mantz (2015) extended the MLINMIX algorithm to
the case of multiple response variables and he described how to
model the prior distribution of covariates using a Dirichlet process
rather than a mixture. Alternative approaches based on generative
models for the data were proposed too (Hogg, Bovy & Lang 2010;
Robotham & Obreschkow 2015).

Here, we build upon these methods to develop a linear regres-
sion tool optimized to the study of time evolving scaling relations.
Some remarkable features show up in astronomical studies.
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2 M. Sereno

As discussed above, astronomical data sets can be affected by
heteroscedatic, correlated errors in both variables and characterized
by intrinsic scatter about the regression line.

Furthermore, the scaling parameters of some phenomenolog-
ical relationships may not be constant with time. Time has then
a special role and cannot be treated as anyone of the independent
variables in a multivariate analysis. In fact, the source of intrinsic
scatter is the variation in the physical properties which can be time
dependent. The slope of the relation may be time dependent too
if some physical processes are more conspicuous either early or
lately.

In astronomical analyses, we are often interested in the corre-
lation among an observable quantity against a variable which we
do not have access to, e.g., the mass of a black hole, the mass of a
galaxy cluster, the star formation rate of a galaxy. We cannot really
measure these quantities but just scattered proxies of them, e.g., the
weak lensing mass of a galaxy in place of the mass.

Differently from gravity, a lot of astrophysical phenomena are
scale dependent. Some baryonic processes may be triggered above
some thresholds and be ineffective below. This can break linearity.

Selection effects and heterogeneity can make the astronomical
sample used in the regression not representative of the population
we are interested in. The sample may be sparse or selected accord-
ing to the value of the response variable, as in a flux limited survey.

I discuss a hierarchical Bayesian method to deal with the
above aspects. Its main assumption is that scatters and uncertainties
are Gaussian. Part of it has been already presented and employed
in the CoMaLit (COmparing MAsses in Literature) series of papers
(Sereno & Ettori 2015b, CoMaLit-I, Sereno, Ettori & Moscardini
2015, CoMaLit-II, Sereno & Ettori 2015a, CoMaLit-IV).

The method shares important features with other recently de-
veloped methods. Maughan (2014) proposed a model to constrain
simultaneously the form and evolution of the scaling relations. The
method distinguish between measured values, intrinsic scattered
values, and model values and can constrain the intrinsic scatter and
its covariance. Correlation among intrinsic scatters has to be con-
sidered in multivariate analyses to obtain unbiased scaling relations
(Evrard et al. 2014; Rozo et al. 2014; Mantz et al. 2010, 2015).

If needed, I adopt the same conventions and notations of the
CoMaLit series. The frame-work cosmological model is the con-
cordance flat ΛCDM universe with density parameter ΩM = 0.3;
H(z) is the redshift dependent Hubble parameter and Ez ≡
H(z)/H0. ‘log’ is the logarithm to base 10 and ‘ln’ is the natu-
ral logarithm.

The method described in the present paper has been imple-
mented in the R language1. The package is named LIRA (LIn-
ear Regression in Astronomy) and it is publicly available from
GitHub2 or the Comprehensive R Archive Network.

2 LINEAR SCALING

Most of the scaling relation we deal with in astronomy are time
evolving power-laws. This simple schematism is supported by ob-
servations, theoretical considerations, and numerical simulations
(Stanek et al. 2010; Giodini et al. 2013). The general form of the re-
lation between two properties, e.g., the observable O and the mass

1 http://www.r-project.org
2 https://github.com/msereno/lira

M , is

O ∝MβF γz , (1)

where β is the slope and the redshift evolution in the median scaling
relation is accounted for by the factor Fz . According to the context,
the redshift factor Fz may be either Ez or the factor (1 + z). In
logarithmic variables, the scaling relation is linear and the scatter is
Gaussian,

logO = α+ β logM + γ logFz. (2)

In the following, T = logFz . If spectroscopically determined,
measurement uncertainties in redshift are negligible3. The relative
uncertainty in photometric redshifts can be small too, and usually
smaller than relative uncertainties in other measurable properties,
such as mass, luminosity, or temperature. I will not consider red-
shift uncertainties in the following.

In the usual framework, the time evolution does not depend
on the mass scale and only affects the normalization. This is sup-
ported by the self-similar scenario, where the factor Fz for ob-
servable properties measured within the same over-density radius
is Ez . However, the interplay between different physical processes
that can be more or less effective at different times can make the
slope time dependent, β(z). Assuming that the evolution of the
slope with redshift is linear in T , Eq. (2) can be generalized as

Y = α+ β X + γ T + δ X T. (3)

whereX = logM , and Y = logO. In statisticians’ terms, the crit-
ical criterion is linearity in the model parameters, not in the model
variables, which makes Eq. (3) a linear model. The time variable T
is deterministic, not affected by measurement errors (which I ne-
glect). The variable X is random.

3 REGRESSION SCHEME

The Bayesian regression model presented in the following is a mea-
surement error model (Feigelson & Babu 2012). Measurement er-
rors are involved in a hierarchical structure and incorporated into
the model. I assume that all scatter terms, i.e., intrinsic scatter and
measurement errors, are Gaussian with zero mean although with
different variances.

Linear regression in astronomy is usually characterized by in-
trinsic scatter about the scaling relation and measurement errors in
both the independent and dependent variables. I assume that the
covariate variable XZ and the response variable YZ , which are la-
tent, fall exactly on a straight line. This is the underlying relation
we want to discover. The latent variables cannot be measured. We
can measure their proxies X and Y , which differ from XZ and
YZ for the intrinsic scatters. These are intrinsic deviations of data
points from the intrinsic scaling relation that are present even if all
measurements were made with perfect precision and accuracy.

The proxiesX and Y are linked to the observed manifest vari-
ables x and y with additional error terms. We could measureX and
Y only in an ideal experiment with infinite accuracy and precision.

The measured values of x and y and their known measurement
errors are the inputs to the model. The variables X , Y , XZ and YZ
have to be determined in the regression procedure. The regression
scheme is summarized in Table 1 and described in details in the
following.

3 I am not considering catastrophic errors
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Table 1. Parameters of the regression scheme and their description. The variables Z is the covariate, X is a proxy of Z, and Y is the response variable. LIRA
is highly customizable and priors can be easily changed. z = zref is the user defined reference redshift.D is either the luminosity or angular diameter distance.
Default priors in square brackets have to be set by the user as delta distributions. Priors are described in Sec. 3.7.

Type Meaning Symbol Code symbol Default prior

Y -Z scaling

YZ = αY |Z + βY |ZZ + γY |ZT + δY |ZZ T

Conditional scaling relation intercept αY |X alpha.YIZ dunif
slope βY |X beta.YIZ dt
time evolution γY |Z gamma.YIZ dt
time tilt δY |Z delta.YIZ 0

YZ = αY |Z,knee + βY |Z,kneeZ + γY |Z,kneeT + δY |Z,kneeZ T

Scaling relation before the break slope for Z < Zknee βY |X,knee beta.YIZ.knee beta.YIZ
time tilt for Z < Zknee δY |Z,knee delta.YIZ.knee delta.YIZ

fknee(Z) = 1/(1 + exp[(Z − Zknee)/lknee])

Transition function break scale Zknee Z.knee dunif
break length lknee l.knee 1e-04

X-Z scaling

XZ = αX|Z + βX|ZZ + γX|ZT + δX|ZZ T

Proxy of the independent variable bias αX|Z alpha.XIZ 0
slope βX|Z beta.XIZ 1
time evolution γX|Z gamma.XIZ 0
time tilt δX|Z delta.XIZ 0

Scatters

σY |Z = [σY |Z,0 + fknee(Z)(σY |Z,0,knee − σY |Z,0)]F
γσY |Z,Fz
z D

γσY |Z,D
z

Intrinsic scatter scatter at z = zref for Z > Zknee σY |Z,0 sigma.YIZ.0 prec.dgamma
scatter at z = zref for Z < Zknee σY |Z,0,knee sigma.YIZ0.knee sigma.YIZ.0
time evolution with Fz γσY |Z,Fz

gamma.sigma.YIZ.Fz 0

time evolution with D γσY |Z,D gamma.sigma.YIZ.D 0

σX|Z = σX|Z,0F
γσX|Z,Fz
z D

γσX|Z,D
z

Intrinsic scatter of the proxy scatter at z = zref σX|Z,0 sigma.XIZ.0 0
time evolution with Fz γσX|Z,Fz

gamma.sigma.XIZ.Fz 0

time evolution with D γσX|Z,Fz
gamma.sigma.XIZ.D 0

ρXY |Z = ρXY |Z,0F
γρXY |Z,Fz
z D

γρXY |Z,D
z

Intrinsic scatter correlation correlation at z = zref ρXY |Z,0 rho.XYIZ.0 0
time evolution with Fz γρXY |Z,Fz

gamma.rho.XYIZ.Fz 0

time evolution with D γρXY |Z,Fz
gamma.rho.XYIZ.D 0

Intrinsic distribution of the independent variable

p(Z) =
∑
k πk N (µZ,k(z), σZ,k(z))

Gaussian mixture number of components nmix n.mixture [1]
weights of the components πk pi[k] ddirch

µZ,k(z) = µZ,0k + γµZ ,FzT + γµZ ,D logD

Means of the Gaussian mean of the first component at z = zref µZ,01 mu.Z.0 dunif
distributions means of the additional components µZ,0k mu.Z.0.mixture[k] dunif

time evolution with Fz γµZ ,Fz gamma.mu.Z.Fz dt
time evolution with D γµZ ,D gamma.mu.Z.D dt

σZ,k(z) = σZ,0kF
γσZ,Fz
z D

γσZ,D
z

Standard deviations of the deviation of the first component at z = zref σZ,01 sigma.Z.0 prec.dgamma
Gaussian distributions deviation of the additional components σZ,0k sigma.Z.0.mixture[k] prec.dgamma

(2 6 k 6 nmix) at z = zref
time evolution with Fz γσZ ,Fz gamma.sigma.Z.Fz 0
time evolution with D γσZ ,D gamma.sigma.Z.D 0
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3.1 Linear scaling

The linear relation between two unscattered quantities (I am not
counting the time) can be expressed as

YZ = αY |Z + βY |ZZ + γY |ZT + δY |ZZ T, (4)

where α denotes the normalization, the slope β accounts for the
dependence with Z, the slope γ accounts for the time-evolution of
the normalization and δ quantifies the tilt of the slope with time.

The basic case summarized in Eq. (4) is enough to describe the
regression of YZ against a variable which is directly observable.
This is the case of the luminosity versus temperature relation of
galaxy clusters. In some other cases, the independent variable Z is
not directly available from measurement. For example, we cannot
measure the mass of a cluster (Z), but we can approximate it with
the weak lensing mass (X). We have then to couple Eq. (4) with

XZ = αX|Z + βX|ZZ + γX|ZT + δX|ZZ T, (5)

In this case, XZ and YZ are related to the same covariate variable,
Z. The relations among Z, XZ and YZ are deterministic and they
are not affected by scatter. XZ and YZ are rescaled versions of the
latent variable Z, which can be seen as a fundamental property of
the object, e.g., the mass of a cluster of galaxies.

3.2 Measurement uncertainties

The measured quantities x and y are the manifest values of X and
Y4. Due to observational uncertainties their relation can be ex-
pressed as

P (xi, yi|Xi,Yi) = N 2D({Xi,Yi},Vδ,i), (6)

whereN 2D is the bivariate Gaussian distribution and Vδ,i is the un-
certainty covariance matrix whose diagonal elements are denoted
as δ2x,i and δ2y,i, and whose off-diagonal elements are denoted as
ρxy,iδx,iδy,i.

As a result of the i-th measurement process, we obtain {xi, yi}
and the related uncertainty covariance matrix Vδ,i. The variables
XZ,i, YZ,i, Xi, and Yi, are unknown variables to be determined
under the assumption of linearity.

3.3 Intrinsic scatter

The intrinsic scatter quantifies how close the data distribution is
to linearity. The true properties of an astronomical object X and
Y , which we can try to measure, are intrinsically scattered with
respect to the latent model variables XZ and YZ , which fall on a
line without deviations but which are hidden properties.

Observable properties are usually log-normally distributed
about the mean scaling relations (Stanek et al. 2010; Fabjan et al.
2011; Angulo et al. 2012; Saro et al. 2013). This is supported by nu-
merical simulations (Stanek et al. 2010; Fabjan et al. 2011; Angulo
et al. 2012) and observational studies (Maughan 2007; Vikhlinin
et al. 2009). We assume that the intrinsic scatters are Gaussian,

P (Xi,Yi|XZi ,YZ,i) = N 2D({XZ,i,YZ,i},Vσ,i), (7)

where Vσ,i is the scatter covariance matrix of the i-th cluster whose
diagonal elements are denoted as σ2

X|Z,i and σ2
Y |Z,i, and whose

off-diagonal elements are denoted as ρXY |Z,iσX|Z,iσY |Z,i.

4 x, y, X, and Y are vectors of n elements.

The intrinsic scatter of a scaling relation is related to the de-
gree of regularity of the sample. The scatter can be prominent in
morphologically complex halos or in objects which depart from
dynamical/hydrostatic equilibrium (Fabjan et al. 2011; Saro et al.
2013). Deviations from spherically symmetry are another major
source of scatter (Limousin et al. 2013; Sereno et al. 2013). Since
high redshift objects are more irregular and less spherical, the scat-
ter is usually expected to increase with redshift Saro et al. (2013);
Fabjan et al. (2011). The degree of scatter and its evolution depends
on the baryonic physics too (Fabjan et al. 2011).

The time evolution of the scatters and of their correlation can
be modeled as (CoMaLit-IV)

σX|Z(z) = σX|Z,0F
γσX|Z,Fz
z D

γσX|Z,D
z , (8)

σY |Z(z) = σY |Z,0F
γσY |Z,Fz
z D

γσY |Z,D
z , (9)

ρXY |Z(z) = ρXY |Z,0F
γρXY |Z,Fz
z D

γρXY |Z,D
z , (10)

where Dz is either the luminosity or the angular diameter distance.
If we want to regress Y against X , we can identify X and Z.

Equation (7) reduces to

P (Yi|Zi) = N (YZ,i, σ2
Y |Z,i), (11)

3.4 Malmquist bias

Selection effects are a common concern in the astronomical anal-
ysis. If only objects above an observational threshold (in the
response variable) are included, the sample is affected by the
Malmquist bias. In this case, the relation between the measured
and the true values (Eq. 6) or between the true values and the un-
scattered values (Eq. 7) are modified.

The bias can be modeled by truncating the probability distri-
butions below the threshold yth,i. The measured and the true values
of the quantities are now related as

P (xi, yi|Xi,Yi) ∝ N
2D({Xi,Yi},Vδ,i)U(yth,i, ), (12)

where U is the uniform distribution null for y < yth,i.
The observational thresholds yth may not be exactly known.

This may be the case when the quantity which the selection pro-
cedure is based on differs from the quantity used in the regression.
We have then to consider the additional relation

P (yth,i) = N (yth,obs,i, δ
2
yth,i ), (13)

where δyth,i is the uncertainty associated to the measured threshold
yth,obs,i. Equations (12 and 13) can be combined by considering a
sigmoid curve instead of the step function in Eq. (12).

The conditional probability of the proxies in the sample is
truncated too,

P (Xi,Yi|XZ,i,YZ,i) = N 2D({XZ,i,YZ,i},Vσ,i)U(Yth,i, ), (14)

where the threshold Yth,i follows the distribution

P (Yth,i) = N (yth,i, δ
2
yi). (15)

3.5 Intrinsic distribution

The proper modeling of the distribution of the independent variable
is crucial. Samples considered in regression analyses are usually bi-
ased with respect to the parent population. Sources may be selected
according to their properties. Furthermore, even in absence of se-
lection effect the intrinsic parent population is usually not uniform,
which may cause tail effects.
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The intrinsic distribution of the independent variable Z is
shaped by two main effects. On one hand, very massive objects are
rarer. On the other hand, massive objects are usually strong emitters
and are easier to be detected to very large distances. As a result, the
shape of the distribution is fairly unimodal and it evolves with time
(CoMaLit-IV).

The combined evolution of the completeness and of the parent
population can be characterized through the evolution of the peak
and of the dispersion of the distribution of the selected sample. The
intrinsic distribution of Z can be approximated with a mixture of
nmix time-evolving Gaussian functions (Kelly 2007, CoMaLit-II,
CoMaLit-IV),

p(Z) =

nmix∑
k=1

πk N
(
µZ,k(z), σ2

Z,k(z)
)
, (16)

where πk is the probability of drawing a data point from the k-th
component,

∑
k πk = 1.

I assume that the mixture components have different mean and
dispersion but share the same evolution parameters. The mean of
each component is connected to the (redshift-evolving) observa-
tional thresholds and to the intrinsic scatter of the observable quan-
tity used to select the clusters, which evolves too. As a result, the
evolution of the (mean of the) k-th mixture component can be mod-
eled as (CoMaLit-IV),

µZ,k(z) = µZ,0k + γµZ ,FzT + γµZ ,D logDz, (17)

where µZ,0k is the mean at the reference redshift.
The evolution of the dispersions is related to the intrinsic scat-

ter of the observable property used to select the samples. The time
dependence can be modeled as (CoMaLit-IV)

σZ,k(z) = σZ,0kF
γσZ,Fz
z D

γσZ,D
z . (18)

The proper modeling of the intrinsic distribution of the inde-
pendent variable is crucial to correct for the Eddington bias, when
the average value of an observed sample differs from the true in-
trinsic average of the objects of the same class (Eddington 1913;
Jeffreys 1938; Eddington 1940;CoMaLit-I).

3.6 Departure from linearity

Physical processes are effective at different scales, which may
cause deviation from linearity. Gravity is the driving force behind
formation and evolution of galaxy clusters but at small scales bary-
onic physics can play a prominent role. As a result, linearity can
break. This can be shaped with a knee in the relation, such that
before the breaking scale Zknee, the scaling follows

YZ = αY |Z,knee + βY |Z,kneeZ + γY |Z,kneeT + δY |Z,kneeZ T. (19)

The normalization αY |Z,knee and the time evolution γY |Z,knee are
determined by requiring equality at the transition Zknee,

αY |Z,knee = αY |Z + (βY |Z − βY |Z,knee) (20)

γY |Z,knee = γY |Z . (21)

The transition between the two regimes can be modeled
through a S-shaped transition function,

fknee =
1

1 + exp [(Z − Zknee)/lknee]
, (22)

where the scale lknee sets the transition length. The relation over the

full range reads

YZ = αY |Z +βY |ZZ+γY |ZT +δY |ZZ T +(Zknee−Z)fknee(Z)

×
[
(βY |Z − βY |Z,knee) + (δY |Z − δY |Z,knee) T

]
, (23)

The same physical processes can affect the scatter too, which I
model as

σY |Z(Z, zref) = σY |Z,0 + (σY |Z,0,knee − σY |Z,0)fknee(Z). (24)

I assume that the redshift evolution of the scatter is not affected.

3.7 Priors

The Bayesian statistical treatment requires the explicit declaration
of the priors. Priors can be either conveniently non-informative, if
we have no guess on the parameters (CoMaLit-I; CoMaLit-II), or
peaked and with small dispersion, to convey the information ob-
tained with exiting experiments or theory. The LIRA approach al-
lows the user to set the prior distribution of all parameters. The
parameters can be also frozen by fixing them with a delta-prior.

Standard priors on the intercept αY |Z and on the means of the
mixture components µZ,0,k can be flat,

αY |Z , µZ,0,k ∼ U(−nL, nL), (25)

where nL is a large number. In LIRA, the default value is nL = 104

and the shortcut for the prior is dunif.
The slopes can follow the Student’s t1 distribution with one

degree of freedom, as suitable for uniformly distributed direction
angles,

βY |Z , γY |Z , γµZ ,Ez , γµZ ,D ∼ t1. (26)

In LIRA, the shortcut for this prior is dt. The γ-type parameters
are set to zero when no redshift information is provided. The other
slope parameters (βX|Z , the δ’s, the other γ’s) are by default frozen
to 0. They can be unpegged by setting other priors. In these cases,
the non-informative t1 prior is suggested.

For the variance, I adopted by default a scale-invariant scaled
inverse χ2-distribution,

σ2
Y |Z,0, σ

2
Z,0,k ∼ Scale-inv-χ2(ν, ξ), (27)

with ν = 2/nL degrees of freedom and scale ξ = 15.
By default, X tallies Z and it is unscattered, σX|Z,0 = 0. The

scatter correlation ρXY |Z,0 is set to zero too. Otherwise, a flat prior
can be adopted,

ρXY |Z,0 ∼ U(−1, 1). (28)

The parameters in the scaling Y − Z and X − Z, see Eqs. (4
and 5) are redundant. If we do not know the value of Z, we cannot
measure all of them. By default, I assumed that X is an unbiased
proxy of Z, i.e., αX|Z = 0, βX|Z = 1, γX|Z = 0, and δX|Z = 0.
For linear relations, fixing the parameters of the X-Z rather than
the Y -Z relation is just a matter of rescaling. In absence of a direct
measurement of Z, the bias between X and Z (i.e, αX|Z 6= 0) is
degenerate with the estimated overall normalization of the scaling
between Y and Z. The regression can only constrain the relative
bias between X and Y (CoMaLit-I).

5 The inverse χ2 prior for the variance is equivalent to a Gamma distri-
bution Γ(r = 1/nL, λ = 1/nL) for the precision, i.e., the inverse of
the variance. Hence, the name prec.dgamma for this prior in LIRA.
prec.dgamma is the only LIRA prior which models the variance. Other
customizable priors refer directly to the standard deviations.
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By default, I considered a single Gaussian distribution to
model the intrinsic distribution of the independent variable (nmix =
1). For mixtures, I adopted a Dirichlet distribution for the probabil-
ity coefficients (Kelly 2007)

π1, ..., πnmix ∼ Dirichlet(1, ..., 1), (29)

which is equivalent to a uniform prior under the constraint∑nmix
k=1 πk = 1. In LIRA, the shortcut for this prior is ddirch.

The number of mixture components nmix has to be fixed. Alter-
native approaches can determine the optimal number of Gaussian
components modeling the intrinsic distribution through a Dirichlet
process (Mantz 2015).

By default, the regression adopts linear models with no breaks.
There is no knee and the slope βY |Z,knee and tilt δY |Z,knee tally βY |Z
and δY |Z , respectively. Otherwise, a flat prior can be adopted for
Zknee and a Student’s-t prior for βY |Z,knee and δY |Z,knee, when ap-
plicable. The transition length is set by default to lknee = 10−4.

The above motivations drove the choice of the default priors
listed in Table 1. For current data-sets, the γD parameters can be set
safely to zero in any regression, see App. B. The only exception is
γµZ ,D , which is crucial to model the time-evolution of the intrinsic
function of flux-selected samples (CoMaLit-IV).

4 SIMULATIONS

I investigated how the approach detailed in Sec. 3 can recover scal-
ing relations in presence of noise, scatter, and selection biases. The
approach was tested with toy models and simulated data samples.
I set up a basic scheme, which was modified if needed to highlight
some aspects. The essential features were as follows.

The independent variables Z were drawn from a normal dis-
tribution with mean µZ,0 = 0, and standard deviation σZ,0 = 0.3.
The values of Y were simulated assumingαY |Z = 0 and βY |Z = 1
and σY |Z,0 = 0.1. X tallies with Z (αX|Z = 0 and βX|Z = 1 and
σX|Z,0 = 0.0). All other parameters were set to zero by default.

The measurement errors were different for each data point.
The variances in the measurement errors, δx2 and δy2 were drawn
from a scaled inverse χ2-distribution with 5 degrees of freedom
(Kelly 2007). The scale parameters, which dictates the typical size
of the measurements errors were set to 0.12. I simulated a varying
degree of correlations among the measurement errors. The correla-
tions were drawn from a uniform distribution ranging from 0.0 to
0.4.

In case of samples covering a redshift range, the above pa-
rameters values were intended as the normalizations at the refer-
ence redshift, zref = 0.01. The default time evolution was set to
γY |Z = 1 and the redshifts were drawn from a lognormal dis-
tribution. I considered Fz = Ez as time factor and I computed
cosmological distances as angular diameter distances.

For each case study I generated 103 data sets, each one
with nsample = 100 data points, as typical of current samples
(CoMaLit-IV). The scaling relations, the scatters, and the intrinsic
Z-distributions were recovered with LIRA. Parameter priors were
set to the default distributions listed in Table 1. Posterior probability
distributions were constrained with Markov chains generated with
a Gibbs sampler. The LIRA package relies on JAGS (Just Another
Gibbs sampler) library to perform the sampling6.

6 JAGS is publicly available at http://mcmc-jags.sourceforge.
net.

Table 2. Scaling parameters recovered from samples whose independent
variable follows a skewed distribution. I report the bi-weight estimators of
the distribution of the median values of the simulated chains.

parameter input LIRA LIRA MLINMIX BCES
nmix = 1 nmix = 3 nmix = 3

z = zref
αY |Z [0] 0.00± 0.03 0.00± 0.03 0.00± 0.03 0.00± 0.04
βY |Z [1] 1.02± 0.12 1.01± 0.11 1.00± 0.11 1.02± 0.15
σY |Z,0 [0.1] 0.09± 0.03 0.09± 0.03 0.10± 0.02 0.13± 0.01

redshift evolution
nmix = 1

αY |Z [0] -0.01± 0.10 0.01± 0.09
βY |Z [1] 1.02± 0.12 0.99± 0.11
γY |Z [1] 0.83± 0.45 1.02± 0.47
σY |Z,0 [0.1] 0.09± 0.03 0.10± 0.02

For each data set, I computed the parameter medians from the
chains and I studied the distributions of the medians of the ensem-
ble.

The simulation scheme was modified if needed to highlight
some aspects. On occasion, I simulated a skewed and evolving in-
trinsic distribution of the independent variables, scattered values of
X , time evolving scatter and slope.

When applicable, I also considered other publicly available
methods such as BCES7 (Akritas & Bershady 1996) and LIN-
MIX8 or its generalization to multivariate regression MLINMIX9

(Kelly 2007). The underlying hypotheses of these methods are well
known and I only used them when applicable. I did not consider
BCES for time-dependent populations and MLINMIX for time
evolving scatters, Malmquist biased samples or in case of deviation
from linearity.

4.1 Skewed distribution

The accurate modeling of the intrinsic distribution of the covariate
variable is crucial to unbiased linear regression. I considered an
asymmetric distribution. I modified the basic simulation scheme by
drawing Z from a skew-normal distribution with shape parameter
αZ,0,skew = 3.0. The location and the scale parameter were made
to coincide with the mean and the standard deviation of the basic
normal distribution. Results are reported in Table 2.

4.1.1 No time evolution

I first considered samples drawn at the same reference redshift.
Results are summarized in Table 2 and Fig. 1. To recover the
parameters, I considered either a simple LIRA model with just
one normal distribution to shape p(Z) or a mixture of three com-
ponents. For comparison, I also computed parameter chains with
LINMIX adopting a mixture of three Gaussian distributions and
the BCES(Y|X) estimator. The original work introducing BCES
did not advocate any method to compute the intrinsic scatter, which
I computed following Pratt et al. (2009).

Input parameters are well reproduced by all methods. In this

7 http://www.astro.wisc.edu/~mab/archive/stats/
stats.html
8 http://idlastro.gsfc.nasa.gov/ftp/pro/math/
linmix_err.pro
9 http://idlastro.gsfc.nasa.gov/ftp/pro/math/
mlinmix_err.pro
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Figure 1. Distribution of the median parameters obtained from samples
drawn from a skewed intrinsic distribution p(Z). The blue, green, orange
and red lines are the smoothed histogram of the distributions obtained with
LIRA by modeling p(Z) with a single Gaussian function, LIRA by adopt-
ing a mixture of 3 Gaussian functions, LINMIX by adopting a mixture of 3
Gaussian functions, and BCES. The vertical gray lines are set at the values
of the input parameters. From the top to the bottom panel: the intercept, the
slope and the intrinsic scatter.

setting, the agreement between LIRA and LINMIX is excellent.
This is expected since the main assumptions of the two methods
are equivalent. Minor differences comes from the slightly different
priors. The parameter distributions agree very well, even though the
distribution of the intrinsic scatter σY |Z,0 from LIRA has a more
pronounced tail at small values.

BCES recovers well the central values of the slope and of the

intercept but statistical uncertainties are larger. The intrinsic scatter
estimate is biased high.

Even though the intrinsic simulated distribution of Z is
skewed, there is no real improvement by augmenting the number
of mixture components, see Table 2. As far as the intrinsic distri-
bution is unimodal and the sample is not too rich, one Gaussian
component is enough.

4.1.2 Evolution with redshift

I considered samples with covering an extended redshift range.
Redshifts were drawn from a lognormal distribution such that ln z
has mean ln(0.3) and standard deviation 0.5. In these simulations,
the skewed distribution of the independent variable is time evolv-
ing. The location parameter of the input distribution evolves with
the redshift as in Eq. (17) with γµZ ,Fz = 0.5 and γµZ ,D = 0.5;
the scale parameter is fixed, whereas the shape parameter evolves
with redshift proportionally to Ez . The input intrinsic scatter σY |Z
is redshift independent.

I recovered the input parameters by modeling p(Z) with a sin-
gle normal distribution whose mean and standard deviation evolve
with time. The prior on γσZ ,Fz was set such that the inverse vari-
ance follows a Gamma distribution, see Eq. (27), whereas γσZ ,D
was set to zero. Even if the input p(Z) distribution is asymmetric,
this modeling is enough to recover the time evolution of p(Z), see
Figure 2, and to get unbiased values of the scaling parameters, see
Table 2 and Figure 3.

For comparison I performed the regression with MLIN-
MIX too. The LIRA scheme differs from the multivariate anal-
ysis detailed in Kelly (2007) in one major feature. LIRA mod-
els the intrinsic distribution with a mixture of one-dimensional
Gaussian components whose means and standard deviations are
time-dependent. On the other hand, MLINMIX models the bi-
dimensional distribution of Z and T with a mixture of bi-
dimensional Gaussian components whose means and variances are
not time-evolving. Notwithstanding this important difference and
some minor differences due to the prior choice, both approaches
can recover with good accuracy the scaling parameters, see Fig-
ure 3.

As far as the scaling parameters and the scatter is concerned, it
is important to model the non-uniformity of the distribution of the
intrinsic distribution. Details on the exact form of the distribution
are of second order. The safer approach to model noisy ad sparse
samples is to use the simplest model, e.g., a single normal distribu-
tion for p(Z). In samples of order of one hundred of objects, there
are just a few items at high redshift. Enforcing a more complex
distribution, such as a skewed Gaussian, to model sparse data can
bias the results toward a few outliers due to overfitting. Complex
distributions are recommended only for very rich samples.

4.2 Eddington bias

The Eddington bias can affect the estimate of the scaling param-
eters whether the measurement errors on the covariate variable
are not accounted for (Eddington 1913; Jeffreys 1938; Eddington
1940) or the X variable is a scattered proxy of the latent covariate
Z (Sereno & Ettori 2015b). Here, we are mostly interested in the
second case, which is often overlooked.

I simulated the samples by assuming that the measurable X is
an unbiased (αX|Z = 0 and βX|Z = 1) but scattered (σX|Z,0 =
0.1) proxy of Z. Results are summarized in Table 3 and Fig. 4.
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Figure 2. The reconstructed intrinsic distribution of the independent vari-
able Z at different redshifts. From top to the bottom, z = 0.1, 0.3, 0.5, 1.0.
The black line is the input distribution, the blue line is the median recon-
structed relation, the shadowed blue region encloses the 1-σ confidence re-
gion for each value ofZ. For a total of nsample = 100 data, we expect∼ 21,
51, 20 and 1 sources in the redshift range 0.0 6 z 6 0.2, 0.2 6 z 6 0.4,
0.4 6 z 6 0.6 and 0.9 6 z 6 1.1, respectively.
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Figure 3. Distribution of the median parameters obtained from samples
with a skewed and time-evolving intrinsic distribution p(Z, z). The blue
(green) line is the smoothed histogram of the distribution obtained with
LIRA (MLINMIX). p(Z, z) was modeled with a single Gaussian func-
tion. The vertical gray lines are set at the values of the input parameters.
From the top to the bottom panel: the intercept, the slope, the time evolu-
tion, and the intrinsic scatter.
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Table 3. Scaling parameters recovered from biased samples. For each case
(listed in Col. 1), I reported on consecutive rows the values of the param-
eters obtained with regressions which do either correct or not for the bias.
Reported values are the bi-weight estimators of the distribution of the me-
dian values of the simulated chains.

case αY |Z βY |Z σY |Z,0

input [0] [1] [0.1]

Eddington bias (σX|Z 6= 0)
corrected 0.00± 0.02 1.01± 0.09 0.09± 0.03
biased 0.00± 0.02 0.90± 0.07 0.14± 0.02

Malmquist bias
corrected 0.01± 0.03 1.06± 0.11 0.09± 0.03
biased 0.03± 0.02 0.90± 0.09 0.08± 0.03

Linearity break (knee)
corrected 0.00± 0.03 0.98± 0.18 0.10± 0.04
biased -0.05± 0.02 1.31± 0.12 0.15± 0.03

The induced bias is significant. The Eddington bias makes the
observed relation flatter and inflates the intrinsic scatter. Since I
considered a scatter σX|Z independent of Z, the bias has a sym-
metric action and the pivot point of the relation does not change.
The normalization is not affected. Statistical uncertainties on the
regression parameters are underestimated, as usual in biased mea-
surements.

4.3 Malmquist bias

The Malmquist bias has long been known (Malmquist 1920). Still,
it can be difficult to tackle. Proposed recipes consider the correction
of the measured values of individual objects, which needs a guess
on the intrinsic scatter, or the modeling through a proper definition
of the selection efficiency in the likelihood function (Vikhlinin et al.
2009).

I simulated the samples as in the standard case but I only kept
objects whose measured response variable y exceeded a threshold
value (y > yth = −0.3). Nearly 80 per cent of the items makes the
cut. Results are summarized in Table 3 and Fig. 5.

The Malmquist bias make the observed relation flatter. If the
bias is not corrected for, the measured slope is biased toward 0
whereas the measured intercept is biased high. The scatter is af-
fected too. It can be underestimated,

4.4 Linearity break

The scales and the effectiveness of different physical processes can
break the linearity of a scaling relation. In the formation and evolu-
tion of galaxy clusters, baryonic and energetic effects are relevant
in small objects and can challenge the dominance of the gravita-
tional force. A bent scaling relation can be more apt to model the
process.

I simulated a broken power law relation. I set the knee at
Zknee = µZ,0 − σZ,0, i.e., ∼ 16 per cent of the sources fol-
low a different scaling. The slope before the break was set at
βY |Z,knee = 3.0. Results are summarized in Table 3 and Fig. 6.

Parameter estimates obtained with a simple linear model are
severely biased. Without a knee, the model cannot distinguish the
two regimes and the measured slope is a weighted mean of the two
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Figure 4. Distribution of the median parameters obtained from samples af-
fected by Eddington bias. The blue line is the smoothed histogram of the
distribution obtained by considering the intrinsic scatter in the covariate
variable. The green line plots the results from a biased fit. The vertical gray
lines are set at the values of the input parameters. From the top to the bottom
panel: the intercept, the slope and the intrinsic scatter.

real slopes. Being the slope before the knee steeper in the simula-
tion, the intercept estimated by the linear model is biased low. If not
modeled, the knee strongly affects the estimated scatter. To mimic
the break and the steeper slope, the estimated scatter is severely
overestimated.
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Figure 5. Distribution of the median parameters obtained from samples se-
lected in the response variable. The blue line is the smoothed histogram of
the distribution obtained by correcting for the Malmquist bias. The green
line plots the results from a biased fit. The vertical gray lines are set at the
values of the input parameters. From the top to the bottom panel: the inter-
cept, the slope and the intrinsic scatter.

4.5 Time dependent intrinsic scatter

Actual data sets are not rich enough to measure the time evolution
of the intrinsic scatter (CoMaLit-IV). The γ parameters modeling
the scatter redshift dependence, i.e., γσY |Z,Fz

or γσY |Z,D , are bet-
ter seen as noise parameters to marginalize over.

The study of the time evolution of the scatter will be at reach
of future surveys (Laureijs et al. 2011). I then increased the num-
ber of simulated sources per sample and their redshift range and I
considered smaller observational errors. I simulated samples with

LIRA
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Figure 6. Distribution of the median parameters of a broken power-law. The
blue line is the smoothed histogram of the distribution obtained by fitting the
simulated data with a scattered broken power law. The green line plots the
results from a biased linear fit. The vertical gray lines are set at the values
of the input parameters. From the top to the bottom panel: the intercept, the
slope and the intrinsic scatter.

400 items each. The scale parameters of the scaled inverse χ2-
distributions modeling the uncertainty variances δx2 and δy2 were
set to 0.052 and measurement errors were assumed to be uncorre-
lated.

Redshifts were drawn from a lognormal distribution such that
ln z has mean ln(0.5) and standard deviation 0.8, i.e., ∼ 19 per
cent of the sources are at z > 1. The independent variables were
drawn from a time evolving normal distribution. The mean evolves
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Figure 7. Distribution of the median parameters obtained from samples
with time-evolving intrinsic scatter. The blue line is the smoothed his-
togram of the distribution obtained by fitting the simulated data with a
time-dependent scatter. The green line plots the results from a biased lin-
ear fit with γσY |Z ,Fz = 0. The vertical gray lines are set at the values of
the input parameters. From the top to the bottom panel: the intercept, the
slope, the time evolution, and the intrinsic scatter, and the scatter evolution.

Table 4. Scaling parameters recovered from time evolving samples. I re-
port the bi-weight estimators of the distribution of the median values of the
simulated chains.

parameter input unbiased biased

Time evolving scatter
αY |Z [0] 0.00± 0.02 0.00± 0.02
βY |Z [1] 1.00± 0.03 1.00± 0.03
γY |Z [1] 1.00± 0.07 1.00± 0.08
σY |Z,0 [0.1] 0.100± 0.008 0.123± 0.007
γσY |Z,Fz

0.5 0.048± 0.15 [0]
Time evolving slope

αY |Z [0] 0.00± 0.05 -0.05± 0.04
βY |Z [1] 1.00± 0.07 1.07± 0.05
γY |Z [1] 0.93± 0.59 1.72± 0.34
δY |Z [1] 0.93± 0.67 [0]

with redshift as in Eq. (17) with γµZ ,Fz = 0.5 and γµZ ,D = 0.5;
the standard deviation is constant.

The intrinsic scatter evolved with redshift as in Eq. (8), with
σY |Z,0 = 0.1, γσY |Z,Fz

= 0.5 and γσY |Z,D = 0. The input intrin-
sic scatter at z ∼ 1 is∼ 30 per cent larger than the local value. The
remaining parameters were set as for the other simulations.

Results are summarized in Table 4 and Fig. 7. Even if we
neglect the scatter evolution, the estimates of the scaling parame-
ters are unbiased whereas the estimated intrinsic scatter is weighted
over the redshift range. The corrected regression can recover both
the normalization and the time evolution of the scatter. Since the
simulated sample is copious and observational accuracy is im-
proved with respect to the other simulations, the posteriori distri-
bution of the intrinsic scatter is symmetric, with no prominent tail
at small values.

4.6 Redshift dependent slope

The emergence of some processes at high or low redshift might
induce a tilting slope. I simulated a scaling relation with δY |Z = 1.
The slope changes by ∆βY |Z ∼ 0.25 from redshift 0 to 1.

Redshifts were drawn from a lognormal distribution such that
ln z has mean ln(0.3) and standard deviation 0.5. The independent
variables were drawn from a time evolving normal distribution with
γµZ ,Fz = 0.5 and γµZ ,D = 0.5; the standard deviation is constant.
The scale parameters of the scaled inverse χ2-distributions model-
ing the uncertainty variances δx2 and δy2 were set to 0.052 and
measurement errors were assumed to be uncorrelated. The remain-
ing parameters were set as in the basic scheme.

Results are summarized in Table 4 and Fig. 8. A correct mod-
eling of the tilt is crucial to get unbiased parameters. Only the esti-
mate of the intrinsic scatter is not affected.

5 CONCLUSIONS

Bayesian linear regression models involve a quite large number of
parameters. The analysis of the hierarchical models can be per-
formed with Markov Chain Monte Carlo (MCMC) simulations.
Since all relations in the model are expressed as conditional proba-
bilities, the posterior can be efficiently explored with a Gibbs sam-
pler (Kelly 2007; Mantz 2015).

LIRA joins a number of already available routines for lin-
ear regression. Just to name a few of them which were proposed
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Figure 8. Distribution of the median parameters obtained from samples
with time-evolving slope. The blue line is the smoothed histogram of the
distribution obtained by fitting the simulated data with a time-dependent
slope. The green line plots the results from a biased linear fit with δY |Z =

0. The vertical gray lines are set at the values of the input parameters. From
the top to the bottom panel: the intercept, the slope, the time evolution, the
slope tilt, and the intrinsic scatter.

to astronomers first, the Fortran function BCES, the IDL (Inter-
active Data Language) routine LINMIX and its multivariate ex-
tension MLINMIX, the Python package astroML10(VanderPlas
et al. 2012), and the R-packages LRGS11, and HYPER-FIT12.

All of these procedures have their own specifics and strengths
that can make them preferable under given circumstances. LIRA
is optimized for astronomical studies. It allows the consistent treat-
ment of time-evolution, intrinsic scatter, and selection effects. Red-
shift has a prominent role in the proposed method. The time de-
pendence of slopes, normalizations, intrinsic scatters, and correla-
tions can be determined. Further complexity is implemented. The
Malmquist and the Eddington biases can be addressed. Deviations
from linearity and bent relations with knees can be accounted for.

The degree to which selection and methodological biases can
affect the study of current and future samples was determined with
a series of simulations. Selection effects are an important concern.
But they are known problems and to some extent they are known
unknowns. We usually know whether they are affecting our sam-
ple. Methodological bias can be unknown unknown. Different pa-
rameterization can give excellent fit to the data. Still results will
differ and we do not know a priori the right parameterization. The
problem is exacerbated by the high degree of degeneracy among in-
volved parameters. The feature of a linear regression model to stay
simple and to add complexity if needed is then important.
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APPENDIX A: THE LIRA R-PACKAGE

The package LIRA is available through a GitHub13 repository and can be
installed from within R with the following command
> install_github("msereno/lira")

LIRA relies on the JAGS (Just Another Gibbs sampler) library14,
which must be installed separately, to perform the Gibbs sampling. C++
compilers are also needed.

The package is loaded into the R-session with
> library(lira)

The linear regression analysis is performed though the function
lira (hence the name of the package), whose output are MCMC
chains produced with a Gibbs sampling. Let x, y, delta.x, delta.y,
covariance.xy, z be the vectors storing the values of x, y, δx, δy , δxy
and z, respectively. n.data is the length of the vectors.

• The chains analyzed in Sec. 4.1.1 and 4.1.2 were obtained with
> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, covariance.xy=covariance.xy,
n.mixture=3)

and
> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, covariance.xy=covariance.xy,
z=z, gamma.sigma.Z.Fz=’dt’),

respectively.
• The case of Sec. 4.2 was studied with

> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, covariance.xy=covariance.xy,
sigma.XIZ.0=’prec.dgamma’)

• The regression corrected for Malmquist bias, as in Sec. 4.3, is per-
formed with
> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, covariance.xy=covariance.xy,
y.threshold = rep(-0.3, n.data))

• The broken power-law in Sec. 4.4 was analyzed with
> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, covariance.xy=covariance.xy,
Z.knee=’dunif(-3.0,3.0)’, beta.YIZ.knee =’dt’)

13 https://hithub.com/msereno/lira
14 http://mcmc-jags.sourceforge.net.

• The samples with time dependent intrinsic scatters in Sec. 4.5 were
analyzed with
> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, z=z, gamma.sigma.XIZ.Fz=’dt’)

• The samples with time evolving slope in Sec. 4.6 were analyzed with
> mcmc.lira <- lira(x, y, delta.x=delta.x,
delta.y=delta.y, z=z, delta.YIZ=’dt’)

The LIRA package and further material and examples can also be
found at http://pico.bo.astro.it/~sereno/LIRA/.

APPENDIX B: REDSHIFT EVOLUTION

In LIRA, the time-evolution of the parameters is factorized in two terms,
one depending on Fz and one on the distance. The factor Fz can be either
Ez or (1 + z). Since the redshift evolution is poorly constrained in present
data-sets, and since both the cosmological distances and Fz are increasing
function of the redshifts, the estimates of the evolution parameters γFz and
γD of each scatter/dispersion parameter are highly degenerate. It is usually
enough to model just one dependence.

For limited redshift baselines, the function Ez can be approximated
with a pawer law of (1 + z). The value of the exponent used in the approx-
imation depends on the redshift range considered and on the cosmological
parameters. It is very difficult to distinguish different features when model-
ing Fz as either Ez or (1 + z).

For similar reasons, the choice of the cosmological distance is sec-
ondary. The angular diameter and the luminosity distance differ for a factor
(1+z)2 which can be approximately englobed inE

γFz
z for limited redshift

baselines.
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